skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ultraviolet spectropolarimetry: conservative and nonconservative mass transfer in OB interacting binaries
The current consensus is that at least half of the OB stars are formed in binary or multiple star systems. The evolution of OB stars is greatly influenced by whether the stars begin as close binaries, and the evolution of the binary systems depend on whether the mass transfer is conservative or nonconservative. FUV/NUV spectropolarimetry is poised to answer the latter question. This paper discusses how the Polstar spectropolarimetry mission can characterize the degree of nonconservative mass transfer that occurs at various stages of binary evolution, from the initial mass reversal to the late Algol phase, and quantify its amount. The proposed instrument combines spectroscopic and polarimetric capabilities, where the spectroscopy can resolve Doppler shifts in UV resonance lines with 10 km/s precision, and polarimetry can resolve linear polarization with 10−3 precision or better. The spectroscopy will identify absorption by mass streams and other plasmas seen in projection against the stellar disk as a function of orbital phase, as well as scattering from extended splash structures, including jets. The polarimetry tracks the light coming from material not seen against the stellar disk, allowing the geometry of the scattering to be tracked, resolving ambiguities left by the spectroscopy and light-curve information. For example, nonconservative mass streams ejected in the polar direction will produce polarization of the opposite sign from conservative transfer accreting in the orbital plane. Time domain coverage over a range of phases of the binary orbit are well supported by the Polstar observing strategy. Special attention will be given to the epochs of enhanced systemic mass loss that have been identified from IUE observations (pre-mass reversal and tangential gas stream impact). We show how the history of systemic mass and angular momentum loss/gain episodes can be inferred via ensemble evolution through the r-q diagram. Combining the above elements will significantly improve our understanding of the mass transfer process and the amount of mass that can escape from the system, an important channel for changing the final mass and ultimate supernova of a large number of massive stars found in binaries at close enough separation to undergo interaction.  more » « less
Award ID(s):
1816944
PAR ID:
10521383
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Astrophysics and Space Science
Volume:
367
Issue:
12
ISSN:
0004-640X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Interacting binaries are of general interest as laboratories for investigating the physics of accretion, which gives rise to the bulk of high-energy radiation in the Galaxy. They allow us to probe stellar evolution processes that cannot be studied in single stars. Understanding the orbital evolution of binaries is essential in order to model the formation of compact binaries. Here we focus our attention on studying orbital evolution driven by angular momentum loss through stellar winds in massive binaries. We run a suite of hydrodynamical simulations of binary stars hosting one mass losing star with varying wind velocity, mass ratio, wind velocity profile and adiabatic index, and compare our results to analytic estimates for drag and angular momentum loss. We find that, at leading order, orbital evolution is determined by the wind velocity and the binary mass ratio. Small ratios of wind to orbital velocities and large accreting companion masses result in high angular momentum loss and a shrinking of the orbit. For wider binaries and binaries hosting lighter mass-capturing companions, the wind mass-loss becomes more symmetric, which results in a widening of the orbit. We present a simple analytic formula that can accurately account for angular momentum losses and changes in the orbit, which depends on the wind velocity and mass ratio. As an example of our formalism, we compare the effects of tides and winds in driving the orbital evolution of high mass X-ray binaries, focusing on Vela X-1 and Cygnus X-1 as examples. 
    more » « less
  2. Abstract Common envelope (CE) evolution is an outstanding open problem in stellar evolution, critical to the formation of compact binaries including gravitational-wave sources. In the “classical” isolated binary evolution scenario for double compact objects, the CE is usually the second mass transfer phase. Thus, the donor star of the CE is the product of a previous binary interaction, often stable Roche lobe overflow (RLOF). Because of the accretion of mass during the first RLOF, the main-sequence core of the accretor star grows and is “rejuvenated.” This modifies the core-envelope boundary region and decreases significantly the envelope binding energy for the remaining evolution. Comparing accretor stars from self-consistent binary models to stars evolved as single, we demonstrate that the rejuvenation can lower the energy required to eject a CE by ∼42%–96% for both black hole and neutron star progenitors, depending on the evolutionary stage and final orbital separation. Therefore, binaries experiencing first stable mass transfer may more easily survive subsequent CE events and result in possibly wider final separations compared to current predictions. Despite their high mass, our accretors also experience extended “blue loops,” which may have observational consequences for low-metallicity stellar populations and asteroseismology. 
    more » « less
  3. null (Ed.)
    Massive Wolf-Rayet (WR) stars in binary systems may produce supernovae capable of emitting long duration gamma ray bursts. Characterizing the structure of the colliding winds in these systems may help constrain the mass loss and transfer properties and help predict their future evolution. I will present new spectropolarimetric data for the possible WR+O binary system WR 71, collected using RSS at the Southern African Large Telescope. WR 71 is a WN6 whose binary status is unknown, but it displays similar spectropolarimetric variations to the known WR+O binary system V444 Cygni. I investigate the orbital and rotational velocity of WR 71's winds by analyzing its polarized emission line profiles as a function of phase, the first analysis of its kind. I compare the line polarization behavior with predictive models of both colliding wind binaries and single stars with co-rotating interaction regions. Describing the wind structure of WR 71 will help determine the rate of mass loss from the system, an important indicator for LGRB progenitors, and shed light on its binary status. 
    more » « less
  4. The majority of Sun-like stars form with binary companions, and their dynamical impact profoundly shapes the formation and survival of their planetary systems. Demographic studies have shown that close binaries (a < 100 au) have suppressed planet-occurrence rates compared to single stars, yet a substantial minority of planets do form and survive at all binary separations. To identify the conditions that foster planet formation in binary systems, we have obtained high-angular-resolution, mm interferometry for a sample of disk-bearing binary systems with known orbital solutions. In this poster, we present the case study of a young binary system, FO Tau (a ~ 22 au). Our ALMA observations resolve dust continuum (1.3 mm) and gas (CO J=2-1) from each circumstellar disk allowing us to trace the dynamical interaction between the binary orbit and the planet-forming reservoir. With these data we determine individual disk orientations and masses, while placing these measurements in the context of a new binary orbital solution. Our findings suggest that the FO Tau system is relatively placid, with observations consistent with alignment between the disks and the binary orbital plane. We compare these findings to models of binary formation and evolution, and their predictions for disk retention and planet formation. 
    more » « less
  5. Abstract While binary merger events have been an active area of study in both simulations and observational work, the formation channels by which a high-mass star extends from Roche lobe overflow (RLO) in a decaying orbit of a black-hole (BH) companion to a binary black-hole (BBH) system merits further investigation. Variable length-scales must be employed to accurately represent the dynamical fluid transfer and morphological development of the primary star as it conforms to a diminishing Roche lobe under the runaway influence of the proximal BH. We have simulated and evolved binary mass flow under these conditions to better identify the key transitional processes from RLO to BBHs. We demonstrate a new methodology to model RLO systems to unprecedented resolution simultaneously across the envelope, donor wind, tidal stream, and accretion disk regimes without reliance upon previously universal symmetry, mass flux, and angular momentum flux assumptions. We have applied this method to the semidetached high-mass X-ray binary M33 X-7 in order to provide a direct comparison to recent observations of an RLO candidate system at two overflow states of overfilling factorsf= 1.01 andf= 1.1. We found extreme overflow (f= 1.1) to be entirely conservative in both mass and angular momentum transport, forming a conical L1 tidal stream of density and deflected angle comparable to existing predictions. This case lies within the unstable mass transfer (MT) regime as recently proposed of M33 X-7. Thef= 1.01 case differed in stream geometry, accretion disk size, and efficiency, demonstrating nonconservative stable MT through a ballistic uniform-width stream. The nonconservative and stable nature of thef= 1.01 case MT also suggests that existing assumptions of semidetached binaries undergoing RLO may mischaracterize their role and distribution as progenitors of BBHs and common envelopes. 
    more » « less