skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polar Upwelling at Three Sunspot Minima
Abstract We summarize the analysis methods used to derive differential rotation leading to the Torsional Oscillations (TO) and a new method for determining Meridional Circulation (MC). The new MC results show a reversal of the flow direction at near-polar latitudes with the time of reversal corresponding closely to the time of sunspot Minima.  more » « less
Award ID(s):
2000994
PAR ID:
10521388
Author(s) / Creator(s):
; ;
Publisher / Repository:
Research Notes American Astronomical Society
Date Published:
Journal Name:
Research Notes of the AAS
Volume:
6
Issue:
9
ISSN:
2515-5172
Page Range / eLocation ID:
181
Subject(s) / Keyword(s):
Polar upwelling
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A central but challenging problem in genetic studies is to test for (usually weak) associations between a complex trait (e.g., a disease status) and sets of multiple genetic variants. Due to the lack of a uniformly most powerful test, data‐adaptive tests, such as the adaptive sum of powered score (aSPU) test, are advantageous in maintaining high power against a wide range of alternatives. However, there is often no closed‐form to accurately and analytically calculate thep‐values of many adaptive tests like aSPU, thus Monte Carlo (MC) simulations are often used, which can be time consuming to achieve a stringent significance level (e.g., 5e‐8) used in genome‐wide association studies (GWAS). To estimate such a smallp‐value, we need a huge number of MC simulations (e.g., 1e+10). As an alternative, we propose using importance sampling to speed up such calculations. We develop some theory to motivate a proposed algorithm for the aSPU test, and show that the proposed method is computationally more efficient than the standard MC simulations. Using both simulated and real data, we demonstrate the superior performance of the new method over the standard MC simulations. 
    more » « less
  2. Abstract Under broken time reversal symmetry such as in the presence of external magnetic field or internal magnetization, a transverse voltage can be established in materials perpendicular to both longitudinal current and applied magnetic field, known as classical Hall effect. However, this symmetry constraint can be relaxed in the nonlinear regime, thereby enabling nonlinear anomalous Hall current in time-reversal invariant materials – an underexplored realm with exciting new opportunities beyond classical linear Hall effect. Here, using group theory and first-principles theory, we demonstrate a remarkable ferroelectric nonlinear anomalous Hall effect in time-reversal invariant few-layer WTe2where nonlinear anomalous Hall current switches in odd-layer WTe2except 1T′ monolayer while remaining invariant in even-layer WTe2upon ferroelectric transition. This even-odd oscillation of ferroelectric nonlinear anomalous Hall effect was found to originate from the absence and presence of Berry curvature dipole reversal and shift dipole reversal due to distinct ferroelectric transformation in even and odd-layer WTe2. Our work not only treats Berry curvature dipole and shift dipole on an equal footing to account for intraband and interband contributions to nonlinear anomalous Hall effect, but also establishes Berry curvature dipole and shift dipole as new order parameters for noncentrosymmetric materials. The present findings suggest that ferroelectric metals and Weyl semimetals may offer unprecedented opportunities for the development of nonlinear quantum electronics. 
    more » « less
  3. Abstract Two covalent organic frameworks consisting of carbazolylene‐ethynylene shape‐persistent macrocycles with azine (MC‐COF‐1) or imine (MC‐COF‐2) linkages were synthesized via imine condensation. The obtained 2D frameworks are fully conjugated which imparts semiconducting properties. In addition, the frameworks showed high porosity with aligned accessible porous channels along the z axis, serving as an ideal platform for post‐synthetic incorporation of I2into the channels to enable electrical conductivity. The resulting MC‐COF‐1 showed an electrical conductivity up to 7.8×10−4 S cm−1at room temperature upon I2doping with the activation energy as low as 0.09 eV. Furthermore, we demonstrated that the electrical properties of both MC‐COFs are switchable between electron‐conducting and insulating states by simply implementing doping‐regenerating cycles. The knowledge gained in this study opens new possibilities for the future development of tunable conductive 2D organic materials. 
    more » « less
  4. (MC)^2 is a lazy memory copy mechanism which can be used within memcpy-like functions to significantly reduce the CPU overhead for copies that are sparsely accessed. It can also hide copy latencies by enhancing the CPU’s ability to execute them asynchronously. (MC)^2’s lazy memcpy avoids copying data at the time of invocation. Instead, (MC)^2 tracks prospective copies. If copied data is later accessed by a CPU or the cache, (MC)^2 uses the tracking information to lazily execute a copy, when necessary. Placing (MC)^2 at the memory controller puts it at the perfect vantage point to eliminate the largest source of memcpy overhead—CPU stalls due to cache misses in the critical path—while imposing minimal overhead itself. (MC)^2 consists of three main components: memory controller extensions that implement a lazy memcpy operation, a new instruction exposing the lazy memcpy, and a flexible software wrapper with semantics identical to memcpy. We implement and evaluate (MC)^2 in the gem5 simulator using a variety of microbenchmarks and workloads, including Google’s Protobuf, where (MC)^2 provides a 43% speedup and Linux huge page copy-on-write faults, where (MC)^2 provides 250× lower latency. 
    more » « less
  5. Abstract Magnetocapacitance (MC) effect has been observed in systems where both symmetries of time-reversal and space-inversion are broken, for examples, in multiferroic materials and spintronic devices. The effect has received increasing attention due to its interesting physics and the prospect of applications. Recently, a large tunnel magnetocapacitance (TMC) of 332% at room temperature was reported using MgO-based (001)-textured magnetic tunnel junctions (MTJs). Here, we report further enhancement in TMC beyond 420% at room temperature using epitaxial MTJs with an MgAl2O4(001) barrier with a cation-disordered spinel structure. This large TMC is partially caused by the high effective tunneling spin polarization, resulted from the excellent lattice matching between the Fe electrodes and the MgAl2O4barrier. The epitaxial nature of this MTJ system sports an enhanced spin-dependent coherent tunneling effect. Among other factors leading to the large TMC are the appearance of the spin capacitance, the large barrier height, and the suppression of spin flipping through the MgAl2O4barrier. We explain the observed TMC by the Debye-Fröhlich modelled calculation incorporating Zhang-sigmoid formula, parabolic barrier approximation, and spin-dependent drift diffusion model. Furthermore, we predict a 1000% TMC in MTJs with a spin polarization of 0.8. These experimental and theoretical findings provide a deeper understanding on the intrinsic mechanism of the TMC effect. New applications based on large TMC may become possible in spintronics, such as multi-value memories, spin logic devices, magnetic sensors, and neuromorphic computing. 
    more » « less