skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A cosmological sandwiched window for lepton-number breaking scale
Abstract A singlet majoron can arise from the seesaw framework as a pseudo-Goldstone boson when the heavy Majorana neutrinos acquire masses via the spontaneous breaking of global U(1)Lsymmetry. The resulting cosmological impacts are usually derived from the effective majoron-neutrino interaction, and the majoron abundance is accumulated through the freeze-in neutrino coalescence. However, a primordial majoron abundance can be predicted in a minimal setup and lead to distinctive cosmological effects. In this work, we consider such a primordial majoron abundance from relativistic freeze-out and calculate the modification to the effective neutrino numberNeff. We demonstrate that the measurements ofNeffwill constrain the parameter space from a primordial majoron abundance in an opposite direction to that from neutrino coalescence. When the contributions from both the primordial abundance and the freeze-in production coexist, the U(1)L-breaking scale (seesaw scale)fwill be pushed into a “sandwiched window”. Remarkably, for majoron masses below 1 MeV and above the eV scale, the future CMB-S4 experiment will completely close such a low-scale seesaw window forf∈ [1,105] GeV. We highlight that any new light particle with a primordial abundance that couples to Standard Model particles may lead to a similar sandwiched window, and such a general phenomenon deserves careful investigation.  more » « less
Award ID(s):
2309456
PAR ID:
10521453
Author(s) / Creator(s):
;
Publisher / Repository:
DOI: 10.1088/1475-7516/2024/04/047
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2024
Issue:
04
ISSN:
1475-7516
Page Range / eLocation ID:
047
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bstract The standard model Higgs quartic coupling vanishes at (10 9 − 10 13 ) GeV. We study SU(2) L × SU(2) R × U(1) B−L theories that incorporate the Higgs Parity mechanism, where this becomes the scale of Left-Right symmetry breaking, v R . Furthermore, these theories solve the strong CP problem and predict three right-handed neutrinos. We introduce cosmologies where SU(2) R × U(1) B−L gauge interactions produce right-handed neutrinos via the freeze-out or freeze-in mechanisms. In both cases, we find the parameter space where the lightest right-handed neutrino is dark matter and the decay of a heavier one creates the baryon asymmetry of the universe via leptogenesis. A theory of flavor is constructed that naturally accounts for the lightness and stability of the right-handed neutrino dark matter, while maintaining sufficient baryon asymmetry. The dark matter abundance and successful natural leptogenesis require v R to be in the range (10 10 − 10 13 ) GeV for freeze-out, in remarkable agreement with the scale where the Higgs quartic coupling vanishes, whereas freeze-in requires v R ≳ 10 9 GeV. The allowed parameter space can be probed by the warmness of dark matter, precise determinations of the top quark mass and QCD coupling by future colliders and lattice computations, and measurement of the neutrino mass hierarchy. 
    more » « less
  2. A<sc>bstract</sc> The strong CP problem is solved in Parity symmetric theories, with the electroweak gauge group containing SU(2)L× SU(2)Rbroken by the minimal set of Higgs fields. Neutrino masses may be explained by adding the same number of gauge singlet fermions as the number of generations. The neutrino masses vanish at tree-level and are only radiatively generated, leading to larger couplings of right-handed neutrinos to Standard Model particles than with the tree-level seesaw mechanism. We compute these radiative corrections and the mixing angles between left- and right-handed neutrinos. We discuss sensitivities to these right-handed neutrinos from a variety of future experiments that search for heavy neutral leptons with masses from tens of MeV to the multi-TeV scale. 
    more » « less
  3. Abstract We discuss Dirac neutrinos whose right-handed component ν R has new interac­tions that may lead to a measurable contribution to the effective number of relativistic neutrino species N eff . We aim at a model-independent and comprehensive study on a variety of possibilities. Processes for ν R -genesis from decay or scattering of thermal species, with spin-0, spin-1/2, or spin-1 initial or final states are all covered. We calculate numerically and analytically the contribution of ν R to N eff primarily in the freeze-in regime, since the freeze-out regime has been studied before. While our approximate analytical results apply only to freeze-in, our numerical calculations work for freeze-out as well, including the transition between the two regimes. Using current and future constraints on N eff , we obtain limits and sensitivities of CMB experiments on masses and couplings of the new interactions. As a by-product, we obtain the contribution of Higgs-neutrino interactions, Δ N eff SM ≃ 7.5 × 10 -12 , assuming the neutrino mass is 0.1 eV and generated by the standard Higgs mechanism. 
    more » « less
  4. Abstract Sterile neutrinos can be produced through mixing with active neutrinos in the hot, dense core of a core-collapse supernova (SN). The standard bounds on the active-sterile mixing (sin2θ) from SN arise from SN1987A energy-loss, requiringEloss< 1052erg. In this work, we discuss a novel bound on sterile neutrino parameter space arising from the energy deposition through its decays inside the SN envelope. Using the observed underluminous SN IIP population, this energy deposition is constrained to be below ∼ 1050erg. Focusing on sterile neutrino mixing only with tau neutrino, for heavy sterile massesmsin the range 100 – 500 MeV, we find stringent constraints on sin2θτreaching two orders of magnitude lower than those from the SN1987A energy loss argument, thereby probing the mixing angles required for Type-I seesaw mechanism. Similar bounds will also be applicable to sterile mixing only with muons (sin2θμ). 
    more » « less
  5. Neutrinos are the most elusive particles of the Standard Model. The physics behind their masses remains unknown and requires introducing new particles and interactions. An elegant solution to this problem is provided by the seesaw mechanism. Typically considered at a high scale, it is potentially testable in gravitational wave experiments by searching for a spectrum from cosmic strings, which offers a rather generic signature across many high-scale seesaw models. Here we consider the possibility of a low-scale seesaw mechanism at the PeV scale, generating neutrino masses within the framework of a model with gauged U(1) lepton number. In this case, the gravitational wave signal at high frequencies arises from a first order phase transition in the early Universe, whereas at low frequencies it is generated by domain wall annihilation, leading to a double-peaked structure in the gravitational wave spectrum. The signals discussed here can be searched for in upcoming experiments, including gravitational wave interferometers, pulsar timing arrays, and astrometry observations. 
    more » « less