Abstract Convective available potential energy (CAPE), a metric associated with severe weather, is expected to increase with warming, but we have lacked a framework that describes its changes in the populated midlatitudes. In the tropics, theory suggests mean CAPE should rise following the Clausius–Clapeyron (C–C) relationship at ∼6%/K. In the heterogeneous midlatitudes, where the mean change is less relevant, we show that CAPE changes are larger and can be well‐described by a simple framework based on moist static energy surplus, which is robust across climate states. This effect is highly general and holds across both high‐resolution nudged regional simulations and free‐running global climate models. The simplicity of this framework means that complex distributional changes in future CAPE can be well‐captured by a simple scaling of present‐day data using only three parameters.
more »
« less
Static Energy Deserves Greater Emphasis in the Meteorology Community
Abstract Potential temperature and static energy are both useful quantities for understanding our atmosphere, yet static energy receives much less attention in weather science relative to climate science. Bridging this conceptual gap is important, as there is a pressing need for our communities to work together to understand and predict changing weather patterns in a warming world. Here we provide evidence for this gap in usage in American Meteorological Society journal publications and in introductory textbooks. We then describe key benefits of static energy for explaining basic concepts in atmospheric science. We encourage scientists and educators unfamiliar with static energy to familiarize themselves with the concept and consider incorporating it into their science and teaching.
more »
« less
- PAR ID:
- 10521567
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Bulletin of the American Meteorological Society
- Volume:
- 104
- Issue:
- 10
- ISSN:
- 0003-0007
- Page Range / eLocation ID:
- E1918 to E1927
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Wind power production is driven by, and varies with, the stochastic yet uncontrollable wind and environmental inputs. To compare a wind turbine's performance, a direct comparison on power outputs is always confounded by the stochastic effect of weather inputs. It is therefore crucial to control for the weather and environmental influence. Toward that objective, our study proposes an energy decomposition approach. We start with comparing the change in the total energy production and refer to the change in total energy as delta energy. On this delta energy, we apply our decomposition method, which is to separate the portion of energy change due to weather effects from that due to the turbine itself. We derive a set of mathematical relationships allowing us to perform this decomposition and examine the credibility and robustness of the proposed decomposition approach through extensive cross‐validation and case studies. We then apply the decomposition approach to Supervisory Control and Data Acquisition data associated with several wind turbines to which leading‐edge protection was carried out. Our study shows that the leading‐edge protection applied on blades may cause a small decline to the power production efficiency in the short term, although we expect the leading‐edge protection to benefit the blade's reliability in the long term.more » « less
-
Abstract The Arctic’s rapid sea ice decline may influence global weather patterns, making the understanding of Arctic weather variability (WV) vital for accurate weather forecasting and analyzing extreme weather events. Quantifying this WV and its impacts under human-induced climate change remains a challenge. Here we develop a complexity-based approach and discover a strong statistical correlation between intraseasonal WV in the Arctic and the Arctic Oscillation. Our findings highlight an increased variability in daily Arctic sea ice, attributed to its decline accelerated by global warming. This weather instability can influence broader regional patterns via atmospheric teleconnections, elevating risks to human activities and weather forecast predictability. Our analyses reveal these teleconnections and a positive feedback loop between Arctic and global weather instabilities, offering insights into how Arctic changes affect global weather. This framework bridges complexity science, Arctic WV, and its widespread implications.more » « less
-
Abstract The excited-state properties of molecular crystals are important for applications in organic electronic devices. TheGWapproximation and Bethe-Salpeter equation (GW+BSE) is the state-of-the-art method for calculating the excited-state properties of crystalline solids with periodic boundary conditions. We present the PAH101 dataset ofGW+BSE calculations for 101 molecular crystals of polycyclic aromatic hydrocarbons (PAHs) with up to ~500 atoms in the unit cell. To the best of our knowledge, this is the firstGW+BSE dataset for molecular crystals. The data records include theGWquasiparticle band structure, the fundamental band gap, the static dielectric constant, the first singlet exciton energy (optical gap), the first triplet exciton energy, the dielectric function, and optical absorption spectra for light polarized along the three lattice vectors. The dataset can be used to (i) discover materials with desired electronic/optical properties, (ii) identify correlations between DFT andGW+BSE quantities, and (iii) train machine learned models to help in materials discovery efforts.more » « less
-
Abstract Studies have implicated the importance of longwave (LW) cloud‐radiative forcing (CRF) in facilitating or accelerating the upscale development of tropical moist convection. While different cloud types are known to have distinct CRF, their individual roles in driving upscale development through radiative feedback is largely unexplored. Here we examine the hypothesis that CRF from stratiform regions has the greatest positive effect on upscale development of tropical convection. We do so through numerical model experiments using convection‐permitting ensemble WRF (Weather Research and Forecasting) simulations of tropical cyclone formation. Using a new column‐by‐column cloud classification scheme, we identify the contributions of five cloud types (shallow, congestus, and deep convective; and stratiform and anvil clouds). We examine their relative impacts on longwave radiation moist static energy (MSE) variance feedback and test the removal of this forcing in additional mechanism‐denial simulations. Our results indicate the importance stratiform and anvil regions in accelerating convective upscale development.more » « less
An official website of the United States government

