skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mercury stocks in discontinuous permafrost and their mobilization by river migration in the Yukon River Basin
Rapid warming in the Arctic threatens to destabilize mercury (Hg) deposits contained within soils in permafrost regions. Yet current estimates of the amount of Hg in permafrost vary by ~4 times. Moreover, how Hg will be released to the environment as permafrost thaws remains poorly known, despite threats to water quality, human health, and the environment. Here we present new measurements of total mercury (THg) contents in discontinuous permafrost in the Yukon River Basin in Alaska. We collected riverbank and floodplain sediments from exposed banks and bars near the villages of Huslia and Beaver. Median THg contents were 49+13/-21 ng THg g sediment−1 and 39 +16 /-18 ng THg g sediment−1 for Huslia and Beaver, respectively (uncertainties as 15th and 85th percentiles). Corresponding THg:organic carbon ratios were 5.4+2 /-2.4 Gg THg Pg C-1 and 4.2+2.4 /-2.9 Gg THg Pg C-1. To constrain floodplain THg stocks, we combined measured THg contents with floodplain stratigraphy. Trends of THg increasing with smaller sediment size and calculated stocks in the upper 1 m and 3 m are similar to those suggested for this region by prior pan-Arctic studies. We combined THg stocks and river migration rates derived from remote sensing to estimate particulate THg erosional and depositional fluxes as river channels migrate across the floodplain. Results show similar fluxes within uncertainty into the river from erosion at both sites (95 +12 /-47 kg THg yr-1 and 26 +154/-13 kg THg yr-1 at Huslia and Beaver, respectively), but very different fluxes out of the river via deposition in aggrading bars (60 +40/-29 kg THg yr-1 and 10+5.3/-1.7 kg THg yr-1). Thus, a significant amount of THg is liberated from permafrost during bank erosion, while a variable but generally lesser portion is subsequently redeposited by migrating rivers.  more » « less
Award ID(s):
2127444 2127442 2127445
PAR ID:
10521785
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Science
Date Published:
Journal Name:
Environmental Research Letters
ISSN:
1748-9326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Due to atmospheric circulation and preservation of organic matter, large amounts of mercury (Hg) are stored in permafrost regions. Due to rapid warming and thawing permafrost in the Arctic, this Hg may be released, potentially degrading water quality and impacting human health. River bank erosion in particular has the ability to quickly mobilize large amounts of Hg-rich floodplain sediments. As part of a National Science Foundation (NSF) funded project to better understand the effects of erosion in the Yukon River Basin, floodplain sediments were collected between June and September 2022 at two locations underlain by discontinuous permafrost within the Yukon River Basin: Beaver, Alaska (AK) (65.700 N, 156.387 W) and Huslia, AK (66.362N, 147.398 W). This dataset contains mercury contents for collected floodplain sediments measured by direct thermal decomposition. Sample metadata also includes information recorded in the field (location, visual grain size description, and sample collection depth) and collected post sample processing (water content and dry density). 
    more » « less
  2. The carbon stored in permafrost deposits represents the single largest soil carbon reservoir on Earth. Concerns about the instability and dynamics of this carbon reservoir during permafrost thaw associated with polar amplification of climate warming contribute a large part of the uncertainty in forecasting future climate. We have been studying the carbon dynamics of permafrost deposits contained in the floodplains of large Arctic rivers. Across Arctic floodplains, accelerating bank erosion can liberate permafrost organic carbon (OC) as carbon dioxide (CO2) or methane (CH4), and/or redeposit it in fluvial units. These different fates have very different implications for climate feedback. Determining OC stocks and their dynamics in Arctic floodplain cutbanks and point bars, as well as the OC load in fluvial transport, is essential to better understand the recycling and export of permafrost carbon. As part of a National Science Foundation (NSF) funded project to better understand the effects of erosion in the Yukon River Basin, floodplain sediments were collected between June and September 2022 at two locations underlain by discontinuous permafrost within the Yukon River Basin in Alaska: Beaver (65.700° North (N), 156.387° West (W)) and Huslia (66.362° N, 147.398° W). This dataset mainly reports OC contents for collected subsurface sediments in floodplains measured by elemental analyzer. The coupled mercury content can be found in Isabel et al., 2024 (https://doi.org/10.18739/A2RF5KH5J). 
    more » « less
  3. null (Ed.)
    Riverbank erosion in yedoma regions strongly affects landscape evolution, biogeochemical cycling, sediment transport, and organic and nutrient fluxes to the Arctic Ocean. Since 2006, we have studied the 35‐m‐high Itkillik River yedoma bluff in northern Alaska, whose retreat rate during 1995–2010 was up to 19 m/yr, which is among the highest rates worldwide. This study extends our previous observations of bluff evolution and shows that average bluff‐top retreat rates decreased from 8.7–10.0 m/yr during 2011–2014 to 4.5–5.8 m/yr during 2015–2019, and bluff‐base retreat rates for the same time period decreased from 4.7–7.5 m/yr to 1.3–1.7 m/yr, correspondingly. Bluff evolution initially involves rapid fluvio‐thermal erosion at the base and block collapse, following by slowdown in river erosion and continuing thermal denudation of the retreating headwall with formation of baydzherakhs. Eventually, input of sediment and water from the headwall diminishes, vegetation develops, and slope gradually stabilizes. The step change in the fluvial–geomorphic system has resulted in a 60% decline in the volumetric mobilization of sediment and organic carbon between 2011 and 2019. Our findings stress the importance of sustained observations at key permafrost region study sites to elucidate critical information related to past and potential landscape evolution in the Arctic. 
    more » « less
  4. null (Ed.)
    Atmospheric delivery of mercury (Hg) is important to the Upper Great Lakes, and understanding gaseous Hg exchange between surface water and air is critical to predicting the effects of declining mercury emissions. Speciated atmospheric Hg, dissolved gaseous Hg (DGM), and particulate and filter passing total Hg were measured on a cruise in Lake Michigan. Low mercury levels reflected pristine background conditions, especially in offshore regions. In the atmosphere, reactive and particle-associated fractions were low (1.0 ± 0.5%) compared to gaseous elemental Hg (1.34 ± 0.14 ng m–3) and were elevated in the urbanized southern basin. DGM was supersaturated, ranging from 17.5 ± 4.8 pg L–1 (330 ± 80%) in the main lake to 33.2 ± 2.4 pg L–1 (730 ± 70%) in Green Bay. Diel cycling of surface DGM showed strong Hg efflux during the day due to increased winds, and build-up at night from continued DGM production. Epilimnetic DGM is formed from photochemical reduction, while hypolimnetic DGM originates from biological Hg reduction. We found that DGM concentrations were greatest below the thermocline (30.8 ± 13.6 pg L–1), accounting for 68–92% of the total DGM in Lake Michigan, highlighting the importance of nonphotochemical reduction in deep stratified lakes. 
    more » « less
  5. Abstract Per‐ and polyfluoroalkyl substances (PFAS) and mercury (Hg) are harmful compounds that are widely present in the environment, partly due to spills and atmospheric pollution. The presence of PFAS and Hg in the tissues of animals that are harvested by rural and Indigenous Alaskans is of great concern, yet fish in Arctic Alaska have not previously been assessed for concentrations of PFAS. Fish species of subsistence and recreational importance were collected from nearshore Beaufort and Chukchi Sea, Alaska habitats and assessed for PFAS and total mercury concentrations [THg]. We found multiple PFAS compounds present at low levels (<3 μg/kg) in the muscle tissue of inconnu, broad whitefish, Dolly Varden char, Arctic flounder, saffron cod, humpback whitefish, and least cisco. In addition, [THg] levels in these fish were well below levels triggering local fish consumption guidelines (<170 μg/kg). These initial results indicate no evidence of the Alaska Arctic nearshore fish species examined as an avenue of PFAS or Hg exposure to people who harvest them. However, sources and trends of these contaminants in the Arctic require further investigation. Environ Toxicol Chem 2023;00:1–7. © 2023 SETAC 
    more » « less