skip to main content


This content will become publicly available on February 26, 2025

Title: Variability in membrane behavior of geosynthetic clay liners
Geosynthetic clay liners (GCLs) comprising sodium bentonite (NaB) have been shown to exhibit significant membrane behavior, whereby contaminants are restricted from passing through the clay due to electrostatic repulsion, potentially enhancing long-term containment performance. Recent membrane behavior research has focused on evaluating membrane efficiency () of enhanced bentonites (e.g., bentonite polymer composites) and testing under more complex conditions (e.g., elevated temperatures, unsaturated conditions), often drawing comparisons with earlier published data on NaB-GCLs. However, the validity of comparing NaB-GCL results across studies and from earlier work remains unclear. No prior study has evaluated the variability in reported  values for the same type of NaB-GCL manufactured in different years. In this study, multistage membrane behavior tests were performed on specimens of the same NaB-GCL type manufactured at different dates. One specimen (GCL1) was taken from a NaB-GCL roll manufactured in the last five years. Another specimen (GCL2) was taken from a NaB-GCL roll that had been stored in a laboratory since 2005. Values of  were measured for both specimens, and also compared to results reported in 2002 for the same type of NaB-GCL (GCL3). To support interpretation of the results, cation exchange capacity, mass per unit area, and swell index tests also were performed. For the same salt solution concentrations, GCL2 exhibited significantly lower  than GCL1 and GCL3. Lower values of  corresponded to lower bentonite mass per unit area. The results have important implications regarding limitations in comparing results of current membrane behavior research on enhanced materials and testing conditions to commonly cited literature data.  more » « less
Award ID(s):
2143145
PAR ID:
10522157
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ASCE
Date Published:
ISSN:
DOI 10.1061/9780784485323.03
Format(s):
Medium: X
Location:
Vancouver, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, small blocks of 17-4 PH stainless steel were manufactured via extrusion-based bound powder extrusion (BPE)/atomic diffusion additive manufacturing (ADAM) technology in two different orientations. Ultrasonic bending-fatigue and uniaxial tensile tests were carried out on the test specimens prepared from the AM blocks. Specifically, a recently-introduced small-size specimen design is employed to carry out time-efficient fatigue tests. Based on the results of the testing, the stress–life (S-N) curves were created in the very high-cycle fatigue (VHCF) regime. The effects of the printing orientation on the fatigue life and tensile strength were discussed, supported by fractography taken from the specimens’ fracture surfaces. The findings of the tensile test and the fatigue test revealed that vertically-oriented test specimens had lower ductility and a shorter fatigue life than their horizontally-oriented counterparts. The resulting S-N curves were also compared against existing data in the open literature. It is concluded that the large-sized pores (which originated from the extrusion process) along the track boundaries strongly affect the fatigue life and elongation of the AM parts. 
    more » « less
  2. Abstract

    In vitro mechanical testing of intervertebral discs is crucial for basic science and pre‐clinical testing. Generally, these tests aim to replicate in vivo conditions, but simplifications are necessary in specimen preparation and mechanical testing due to complexities in both structure and the loading conditions required to replicate in vivo conditions. There has been a growing interest in developing a consensus of testing protocols within the spine community to improve comparison of results between studies. The objective of this study was to perform axial compression experiments on bovine bone‐disc‐bone specimens at three institutions. No differences were observed between testing environment being air, with PBS soaked gauze, or a PBS bath (P > .206). A 100‐fold increase in loading rate resulted in a small (2%) but significant increase in compressive mechanics (P < .017). A 7% difference in compressive stiffness between Labs B and C was eliminated when values were adjusted for test system compliance. Specimens tested at Lab A, however, were found to be stiffer than specimens from Lab B and C. Even after normalizing for disc geometry and adjusting for system compliance, an ∼35% difference was observed between UK based labs (B and C) and the USA based lab (A). Large differences in specimen stiffness may be due to genetic differences between breeds or in agricultural feed and use of growth hormones; highlighting significant challenges in comparing mechanics data across studies. This research provides a standardized test protocol for the comparison of spinal specimens and provides steps towards understanding how location and test set‐up may affect biomechanical results.

     
    more » « less
  3. Abstract In this research, a room temperature multicycle nanoindentation technique was implemented to evaluate the effects of the laser peening (LP) process on the surface mechanical behavior of additively manufactured (AM) Inconel 625. Repetitive deformation was introduced by loading-unloading during an instrumented nanoindentation test on the as-built (No LP), 1-layer, and 4-layer laser peened (1LP and 4LP) conditions. It was observed that laser-peened specimens had a significantly higher resistance to penetration of the indenter and lower permanent deformation. This is attributed to the pre-existing dislocation density induced by LP in the material which affects the dislocation interactions during the cyclic indentation. Moreover, high levels of compressive stresses, which are greater in the 4LP specimen than the 1LP specimen, lead to more effective improvement of surface fatigue properties. The transition of the material response from elastic-plastic to almost purely elastic in 4LP specimens was initiated much earlier than it did in the No LP, and 1LP specimens. In addition to the surface fatigue properties, hardness and elastic modulus were also evaluated and compared. 
    more » « less
  4. Currently, verifying additively manufactured (AM) parts requires time consuming and expensive nondestructive evaluation (NDE) processes such as computed tomography (CT) x-ray scanning. While such methods provide details on flaw type and location, they require significant cost and time. Often, in production environments, significant value is gained by rapidly screening part specimens for flaws at all. Cost-effective per-specimen testing for production runs of AM parts is important for their use to be economically justified. In this work, Northrop Grumman Corporation and Virginia Tech explored impedance-based testing as a means to evaluate AM titanium specimens. Specimens with and without manually-designed flaws were fabricated through a metal- based AM process and evaluated using the impedance-based technique. CT scans confirmed that the intended flaws in the experimental specimens were present. Impedance-based examination also showed the presence of unintended defects. After machining away the unintended defective regions, the flaw-containing defective specimen had a clearly different impedance ‘signature’ than non-flawed baseline specimens. Additional analysis confirmed that the impedance test method required cheaper capital equipment and required less technician time to examine test results. Taken together, this means that the impedance-based this method can reduce the total cost of utilizing AM for metal part manufacturing. 
    more » « less
  5. The effects of build orientation on the fatigue behavior of additively-manufactured Ti-6Al- 4V using a Laser-Based Power Bed Fusion (L-PBF) process is investigated. Ti-6Al-4V rods were manufactured in vertical, horizontal, and 45º angle orientations. The specimens were then machined and polished along the gage section in order to reduce the effects of surface roughness on fatigue behavior. Fully-reversed strain-controlled uniaxial fatigue tests were performed at various strain amplitudes with frequencies adjusted to maintain an average constant strain rate throughout testing. Results indicate slight variation in fatigue behavior of specimens fabricated in the different orientations investigated. Fractography was conducted using scanning electron microscopy after mechanical testing in order to investigate the crack initiation sites and determine the defect responsible for the failure. The experimental program utilized and results obtained will be presented and discussed. 
    more » « less