Nonlocal vector calculus, which is based on the nonlocal forms of gradient, divergence, and Laplace operators in multiple dimensions, has shown promising applications in fields such as hydrology, mechanics, and image processing. In this work, we study the analytical underpinnings of these operators. We rigorously treat compositions of nonlocal operators, prove nonlocal vector calculus identities, and connect weighted and unweighted variational frameworks. We combine these results to obtain a weighted fractional Helmholtz decomposition which is valid for sufficiently smooth vector fields. Our approach identifies the function spaces in which the stated identities and decompositions hold, providing a rigorous foundation to the nonlocal vector calculus identities that can serve as tools for nonlocal modeling in higher dimensions.
more »
« less
Weighted Radon transforms of vector fields, with applications to magnetoacoustoelectric tomography
Abstract Currently, theory of ray transforms of vector and tensor fields is well developed, but the Radon transforms of such fields have not been fully analyzed. We thus consider linearly weighted and unweighted longitudinal and transversal Radon transforms of vector fields. As usual, we use the standard Helmholtz decomposition of smooth and fast decreasing vector fields over the whole space. We show that such a decomposition produces potential and solenoidal components decreasing at infinity fast enough to guarantee the existence of the unweighted longitudinal and transversal Radon transforms of these components. It is known that reconstruction of an arbitrary vector field from only longitudinal or only transversal transforms is impossible. However, for the cases when both linearly weighted and unweighted transforms of either one of the types are known, we derive explicit inversion formulas for the full reconstruction of the field. Our interest in the inversion of such transforms stems from a certain inverse problem arising in magnetoacoustoelectric tomography (MAET). The connection between the weighted Radon transforms and MAET is exhibited in the paper. Finally, we demonstrate performance and noise sensitivity of the new inversion formulas in numerical simulations.
more »
« less
- Award ID(s):
- 1937229
- PAR ID:
- 10522251
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- Inverse Problems
- Volume:
- 39
- Issue:
- 6
- ISSN:
- 0266-5611
- Page Range / eLocation ID:
- 065014
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
SUMMARY A fast algorithm for the large-scale joint inversion of gravity and magnetic data is developed. The algorithm uses a non-linear Gramian constraint to impose correlation between the density and susceptibility of the reconstructed models. The global objective function is formulated in the space of the weighted parameters, but the Gramian constraint is implemented in the original space, and the non-linear constraint is imposed using two separate Lagrange parameters, one for each model domain. It is significant that this combined approach, using the two spaces provides more similarity between the reconstructed models. Moreover, it is shown theoretically that the gradient for the use of the unweighted space is not a scalar multiple of that used for the weighted space, and hence cannot be accounted for by adjusting the Lagrange parameters. It is assumed that the measured data are obtained on a uniform grid and that a consistent regular discretization of the volume domain is imposed. Then, the sensitivity matrices exhibit a block-Toeplitz-Toeplitz-block structure for each depth layer of the model domain, and both forward and transpose operations with the matrices can be implemented efficiently using two dimensional fast Fourier transforms. This makes it feasible to solve for large scale problems with respect to both computational costs and memory demands, and to solve the non-linear problem by applying iterative methods that rely only on matrix–vector multiplications. As such, the use of the regularized reweighted conjugate gradient algorithm, in conjunction with the structure of the sensitivity matrices, leads to a fast methodology for large-scale joint inversion of geophysical data sets. Numerical simulations demonstrate that it is possible to apply a non-linear joint inversion algorithm, with Lp-norm stabilisers, for the reconstruction of large model domains on a standard laptop computer. It is demonstrated, that while the p = 1 choice provides sparse reconstructed solutions with sharp boundaries, it is also possible to use p = 2 in order to provide smooth and blurred models. The methodology is used for inverting gravity and magnetic data obtained over an area in northwest of Mesoproterozoic St Francois Terrane, southeast of Missouri, USA.more » « less
-
Abstract This paper addresses the overdetermined problem of inverting the n -dimensional cone (or Compton) transform that integrates a function over conical surfaces in R n . The study of the cone transform originates from Compton camera imaging, a nuclear imaging method for the passive detection of gamma-ray sources. We present a new identity relating the n -dimensional cone and Radon transforms through spherical convolutions with arbitrary weight functions. This relationship, which generalizes a previously obtained identity, leads to various inversion formulas in n -dimensions under a mild assumption on the geometry of detectors. We present two such formulas along with the results of their numerical implementation using synthetic phantoms. Compared to our previously discovered inversion techniques, the new formulas are more stable and simpler to implement numerically.more » « less
-
Abstract Adaptive mesh refinement (AMR) is the art of solving PDEs on a mesh hierarchy with increasing mesh refinement at each level of the hierarchy. Accurate treatment on AMR hierarchies requires accurate prolongation of the solution from a coarse mesh to a newly defined finer mesh. For scalar variables, suitably high-order finite volume WENO methods can carry out such a prolongation. However, classes of PDEs, such as computational electrodynamics (CED) and magnetohydrodynamics (MHD), require that vector fields preserve a divergence constraint. The primal variables in such schemes consist of normal components of the vector field that are collocated at the faces of the mesh. As a result, the reconstruction and prolongation strategies for divergence constraint-preserving vector fields are necessarily more intricate. In this paper we present a fourth-order divergence constraint-preserving prolongation strategy that is analytically exact. Extension to higher orders using analytically exact methods is very challenging. To overcome that challenge, a novel WENO-like reconstruction strategy is invented that matches the moments of the vector field in the faces, where the vector field components are collocated. This approach is almost divergence constraint-preserving, therefore, we call it WENO-ADP. To make it exactly divergence constraint-preserving, a touch-up procedure is developed that is based on a constrained least squares (CLSQ) method for restoring the divergence constraint up to machine accuracy. With the touch-up, it is called WENO-ADPT. It is shown that refinement ratios of two and higher can be accommodated. An item of broader interest in this work is that we have also been able to invent very efficient finite volume WENO methods, where the coefficients are very easily obtained and the multidimensional smoothness indicators can be expressed as perfect squares. We demonstrate that the divergence constraint-preserving strategy works at several high orders for divergence-free vector fields as well as vector fields, where the divergence of the vector field has to match a charge density and its higher moments. We also show that our methods overcome the late time instability that has been known to plague adaptive computations in CED.more » « less
-
Abstract We compare a method for inferring the photospheric vector magnetic field using only spectroscopy to a conventional method based on polarimetry. The magnetic field strengthBand inclination angle can be inferred from the Zeeman splitting using only StokesI. We applied this method to a sunspot observed with the Vacuum Tower Telescope and compared the results to vector magnetograms from the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory, which used a polarimetric inversion. The spectroscopic inversion tends to show higher values inBcompared to the polarimetric data. In quiet regions the discrepancy inBwas typically a factor of two. In the strong sunspot fields, the differences averaged ≈22%. These discrepancies are significant, but comparable to those typically found among magnetograms from different instruments. Our results support the use of the spectroscopic inversion technique to provide a fast and reasonable estimate ofB.more » « less
An official website of the United States government

