Oxidation of Ni-Cr and Ni-Cr-Mo was studied in operando with near ambient pressure x-ray photoelectron spectroscopy in the Cabrera-Mott regime. The oxidation temperature was 200°C—a severely diffusion-limited regime. The near-surface alloy is Cr-enriched after the reduction of native oxide in vacuum, and especially so for Ni-15Cr-6Mo. Mo-cations are integrated into the oxide and Mo(VI) dominates at the surface. The surface chemistry-driven promotion of chromia by Mo predicted by theory is negated by the limited surface diffusion of reactants. Preoxidation processing is proposed to control the oxide properties for the use of Ni-Cr superalloys at low temperatures.
more »
« less
Implication of surface oxidation of nanoscale molybdenum carbide on electrocatalytic activity
The surface oxidation of molybdenum carbide nanoparticles was controlled by the electrochemical method. The impact of surface oxidation on catalytic properties was studied by both spectroscopic and computational methods.
more »
« less
- PAR ID:
- 10522260
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 12
- Issue:
- 25
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 15163 to 15176
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this work, we investigated atmospheric pressure plasma jet (APPJ)-assisted methane oxidation over a Ni-SiO 2 /Al 2 O 3 catalyst. We evaluated possible reaction mechanisms by analyzing the correlation of gas phase, surface and plasma-produced species. Plasma feed gas compositions, plasma powers, and catalyst temperatures were varied to expand the experimental parameters. Real-time Fourier-transform infrared spectroscopy was applied to quantify gas phase species from the reactions. The reactive incident fluxes generated by plasma were measured by molecular beam mass spectroscopy using an identical APPJ operating at the same conditions. A strong correlation of the quantified fluxes of plasma-produced atomic oxygen with that of CH 4 consumption, and CO and CO 2 formation implies that O atoms play an essential role in CH 4 oxidation for the investigated conditions. With the integration of APPJ, the apparent activation energy was lowered and a synergistic effect of 30% was observed. We also performed in-situ diffuse reflectance infrared Fourier-transform spectroscopy to analyze the catalyst surface. The surface analysis showed that surface CO abundance mirrored the surface coverage of CH n at 25 °C. This suggests that CH n adsorbed on the catalyst surface as an intermediate species that was subsequently transformed into surface CO. We observed very little surface CH n absorbance at 500 °C, while a ten-fold increase of surface CO and stronger CO 2 absorption were seen. This indicates that for a nickel catalyst at 500 °C, the dissociation of CH 4 to CH n may be the rate-determining step in the plasma-assisted CH 4 oxidation for our conditions. We also found the CO vibrational frequency changes from 2143 cm −1 for gas phase CO to 2196 cm −1 for CO on a 25 °C catalyst surface, whereas the frequency of CO on a 500 °C catalyst was 2188 cm −1 . The change in CO vibrational frequency may be related to the oxidation of the catalyst.more » « less
-
Modification of ethyleneechlorotrifluoroethylene (ECTFE) membranes by simple surface oxidation was reported in the present investigation in order to induce thin hydrophilic layer on hydrophobic membrane surface for the treatment of real produced water (PW). FTIR spectra indicates the appearance of hydrophilic functional groups (–OH and –COOH) on the membrane surface due to modification, while water contact angle, zeta potential measurement, EDX, XPS analysis confirmed the presence of O functionalized hydrophilic groups on the surface. The effect of modification temperature and the time of surface oxidation on the performance of the resulting membranes were studied systematically, which revealed that induction of optimized hydrophilicity can successfully reduce the organic fouling. However, too much hydrophilic surface induces polar/electrostatic interaction resulting salt deposition on membrane surface. A simple on site cleaning procedure was demonstrated to be successful for the treatment PW for at least three consecutive cycles of membrane distillation (MD).more » « less
-
Abstract The electrochemical detection of two pharmaceuticals, diclofenac (DCF) and carbamazepine (CBZ), was investigated as an oxidation current using boron‐doped nanocrystalline diamond (BDD) thin‐film electrodes. Both voltammetry and flow injection analysis with amperometric detection (FIA‐EC) were used to measure the drugs in standard solutions and a urine simulant. The oxidation potential for DCF wasca. 0.7 V vs. Ag/AgCl (3 M KCl) in 0.1 M phosphate buffer (pH 7.2) and wasca. 1.2 V for CBZ in 0.1 M perchloric acid. The DCF oxidation reaction was diffusion controlled at the detection potential with evidence of some surface fouling by reaction products. The CBZ oxidation reaction was also controlled by diffusion at the detection potential, but with no surface fouling. The voltammetric peak currents for both drugs increased linearly with the concentration in the micromolar range (r2≥0.994). FIA‐EC analysis of DCF and CBZ revealed a linear dynamic range from at least 0.1 to 100 μM with the actual minimum concentration detectable (S/N=3) being less than the lowest concentration measured. The recovery percentage for DCF in the urine simulant ranged from 94–108% and from 97–100% for CBZ, both assessed using square wave voltammetry. FIA‐EC data revealed that the BDD electrodes offer excellent intra and inter‐electrode repeatability with an RSD for DCF and CBZ of 4.90% and 3.81%, respectively. The BDD electrode provided good reproducibility and response stability over eight days of continuous use detecting both DCF and CBZ. Overall, BDD electrodes are a viable material for the sensitive, selective, and reproducible electrochemical detection of these two pharmaceuticals.more » « less
-
Abstract Planetary formation involves highly energetic collisions, the consequences of which set the stage for the ensuing planetary evolution. During accretion, Earth's mantle was largely molten, a so‐called magma ocean, and its oxidation state was determined by equilibration with metal‐rich cores of infalling planetesimals through redox buffering reactions. We test two proposed mechanisms (metal layer and metal droplets) for equilibration in a magma ocean and the resulting oxidation state (Fe3+/ΣFe). Using scaling laws on convective mixing, we find that the metal layer could promote oxidation of a magma ocean, but this layer is too short‐lived to reproduce present‐day mantle Fe3+/ΣFe (2%–6%). Metal droplets produced by the fragmentation of impactor cores can also promote oxidation of a magma ocean. We use Monte Carlo sampling on two possible accretion scenarios to determine the likely range of oxidation states by metal droplets. We find that equilibration between silicate and metal droplets tends toward higher mantle Fe3+/ΣFe than presently observed. To achieve present‐day mantle Fe3+/ΣFe and maintain the degree of equilibration suggested by Hf‐W and U‐Pb systematics (30%–70%), the last (Moon‐forming) giant impact likely did not melt the entire mantle, therefore leaving the mantle stratified in terms of oxidation state after main accretion completes. Furthermore, late accretion impacts during the Hadean (4.5–4.0 Ga) could generate reduced domains in the shallow upper mantle, potentially sustaining surface environments conducive for prebiotic chemistry.more » « less
An official website of the United States government

