Direct contact membrane distillation (DCMD) has been conducted to treat hydraulic fracturing-produced water using polyvinylidenedifluoride (PVDF) membranes. Tailoring the surface properties of the membrane is critical in order to reduce the rate of adsorption of dissolved organic species as well as mineral salts. The PVDF membranes have been modified by grafting zwitterion and polyionic liquid-based polymer chains. In addition, surface oxidation of the PVDF membrane has been conducted using KMnO4 and NaOH. Surface modification conditions were chosen in order to minimize the decrease in contact angle. Thus, the membranes remain hydrophobic, essential for suppression of wetting. DCMD was conducted using the base PVDF membrane as well as modified membranes. In addition, DCMD was conducted on the base membrane using produced water (PW) that was pretreated by electrocoagulation to remove dissolved organic compounds. After DCMD all membranes were analyzed by scanning electron microscopy imaging as well as Energy-Dispersive X-Ray spectroscopy. Surface modification led to a greater volume of PW being treated by the membrane prior to drastic flux decline. The results indicate that tailoring the surface properties of the membrane enhances fouling resistance and could reduce pretreatment requirements.
more »
« less
Surface Oxidation of Ethylenechlorotrifluoroethylene (ECTFE) Membrane for the Treatment of Real Produced Water by Membrane Distillation
Modification of ethyleneechlorotrifluoroethylene (ECTFE) membranes by simple surface oxidation was reported in the present investigation in order to induce thin hydrophilic layer on hydrophobic membrane surface for the treatment of real produced water (PW). FTIR spectra indicates the appearance of hydrophilic functional groups (–OH and –COOH) on the membrane surface due to modification, while water contact angle, zeta potential measurement, EDX, XPS analysis confirmed the presence of O functionalized hydrophilic groups on the surface. The effect of modification temperature and the time of surface oxidation on the performance of the resulting membranes were studied systematically, which revealed that induction of optimized hydrophilicity can successfully reduce the organic fouling. However, too much hydrophilic surface induces polar/electrostatic interaction resulting salt deposition on membrane surface. A simple on site cleaning procedure was demonstrated to be successful for the treatment PW for at least three consecutive cycles of membrane distillation (MD).
more »
« less
- Award ID(s):
- 1822101
- PAR ID:
- 10105568
- Date Published:
- Journal Name:
- International Journal of Environmental Research and Public Health
- Volume:
- 15
- Issue:
- 8
- ISSN:
- 1660-4601
- Page Range / eLocation ID:
- 1561
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Simultaneous fouling and pore wetting of the membrane during membrane distillation (MD) is a major concern. In this work, an electrospun bilayer membrane for enhancing fouling and wetting resistance has been developed for treating hydraulic fracture-produced water (PW) by MD. These PWs can contain over 200,000 ppm total dissolved solids, organic compounds and surfactants. The membrane consists of an omniphobic surface that faces the permeate stream and a hydrophilic surface that faces the feed stream. The omniphobic surface was decorated by growing nanoparticles, followed by silanization to lower the surface energy. An epoxied zwitterionic polymer was grafted onto the membrane surface that faces the feed stream to form a tight antifouling hydration layer. The membrane was challenged with an aqueous NaCl solution containing sodium dodecyl sulfate (SDS), an ampholyte and crude oil. In the presence of SDS and crude oil, the membrane was stable and displayed salt rejection (>99.9%). Further, the decrease was much less than the base polyvinylidene difluoride (PVDF) electrospun membrane. The membranes were also challenged with actual PW. Our results highlight the importance of tuning the properties of the membrane surface that faces the feed and permeate streams in order to maximize membrane stability, flux and salt rejection.more » « less
-
In this study, hydrophilic silica nanoparticles (Si NPs) were used to modify α-alumina tubular membranes to improve their performance in terms of flux, oil rejection, and anti-fouling properties. Our work focuses on enhancing membrane performance, particularly for difficult applications such as produced water treatment. The prepared membranes were applied for oil-in-water emulsion treatment. After coating hydrophilic Si NPs, the oil contact angle improved from 133.8° to 171.4°. To prevent Si NPs from leaching off the surface of α-alumina tubular membranes, polyvinyl alcohol was used to coat the membranes as a pre-treatment step before Si NP modification. After coating the membrane with Si NPs, the roughness of the membrane surface decreased, likely leading to less fouling. After coating Si NPs, Total Organic Carbon rejection increased from 93.1% for pristine α-alumina tubular membranes to 97.7% for silica-modified membranes because of hydrophilic improvements of the modified membranes. The Si NP coating improved the anti-fouling property of membranes with the flux recovery ratio increasing from 71.3% for pristine α-alumina tubular membranes to 85.9% for silica-modified membranes. Scanning Electron Microscopy, Energy- dispersive X-ray spectroscopy, oil contact angle, and Atomic Force Microscopy characterization tests were done. The tests showed successful Si NPs impregnation and altered wettability.more » « less
-
Single layer graphene oxide (SLGO) was studied as a novel coating material to drastically improve the antifouling performance of polyether sulfone (PES) hollow fiber (HF) membranes in membrane bioreactor (MBR) application. By selectively modifying the membrane surface, only a small amount of SLGO coating (6.2 mg m −2 ) was needed to achieve acceptable membrane performance. The UV treatment of the SLGO coating further assisted in improving the antifouling properties of the as-prepared PES HF membranes. By comparing the transmembrane pressure of pristine PES HF and PES_GO 6.20_ UV X (X = 0–1.5 h) membranes in a MBR for wastewater treatment at a fixed water flux, the PES_GO 6.20_ UV 1.0 membrane coated with 1 h UV-treated SLGO was demonstrated to substantially relieve the bio-fouling problem. To understand the influence of SLGO modification on membrane performance, FESEM, ATR-FTIR, and AFM analyses were conducted to characterize the as-prepared membranes, and the SLGO deposition mechanism was also proposed in this study.more » « less
-
null (Ed.)Initiated chemical vapor deposition (iCVD) was used to coat two porous substrates (i.e., hydrophilic cellulose acetate (CA) and hydrophobic polytetrafluoroethylene (PTFE)) with a crosslinked fluoropolymer to improve membrane wetting resistance. The coated CA membrane was superhydrophobic and symmetric. The coated PTFE membrane was hydrophobic and asymmetric, with smaller pore size and lower porosity on the top surface than on the bottom surface. Membrane performance was tested in membrane distillation experiments with (1) a high-salinity feed solution and (2) a surfactant-containing feed solution. In both cases, the coated membranes had higher wetting resistance than the uncoated membranes. Notably, wetting resistances were better predicted by LEP distributions than by minimum LEP values. When LEP distributions were skewed towards high LEP values (i.e., when small pores with high LEP were greater in number), significant (measurable) salt passage did not occur. For the high-salinity feed solution, the coated PTFE membrane had greater wetting resistance than the coated CA membrane; thus, reduced surface pore size/porosity (which may reduce intrapore scaling) was more effective than increased surface hydrophobicity (which may reduce surface nucleation) in preventing scaling-induced wetting. Reduced pore size/porosity was equally as effective as increased hydrophobicity in resisting surfactant-induced wetting. However, reduced porosity can negatively impact water flux; this represents a permeability/wetting resistance tradeoff in membrane distillation – especially for high-salinity applications. Membrane and/or membrane coating properties must be optimized to overcome this permeability/wetting resistance tradeoff and make MD viable for the treatment of challenging streams. Then, increasing hydrophobicity may not be necessary to impart high wetting resistance to porous membranes. These results are important for future membrane design, especially as manufacturers seek to replace perfluorinated materials with environmentally friendly alternatives.more » « less
An official website of the United States government

