skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on March 25, 2025

Title: Deep Spatio-Temporal Encoding: Achieving Higher Accuracy by Aligning with External Real-World Data
Spatio-temporal deep learning has drawn a lot of attention since many downstream real-world applications can benefit from accurate predictions. For example, accurate prediction of heavy rainfall events is essential for effective urban water usage, flooding warning, and mitigation. In this paper, we propose a strategy to leverage spatially connected real-world features to enhance prediction accuracy. Specifically, we leverage spatially connected real-world climate data to predict heavy rainfall risks in a broad range in our case study. We experimentally ascertain that our Trans-Graph Convolutional Network (TGCN) accurately predicts heavy rainfall risks and real estate trends, demonstrating the advantage of incorporating external spatially-connected real-world data to improve model performance, and it shows that this proposed study has a significant potential to enhance spatio-temporal prediction accuracy, aiding in efficient urban water usage, flooding risk warning, and fair housing in real estate.  more » « less
Award ID(s):
2318641
PAR ID:
10522350
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
CEUR Workshop Proceedings (CEUR-WS.org, ISSN 1613-0073)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Advanced spatio-temporal electric load modeling and accurate spatio-temporal load forecast are essential to both short-term operation and long-term planning of power systems. This paper explores the spatio-temporal dependencies of electric load time series. The Southern California feeder load data show that feeders which are spatially close to each other share a more similar load pattern than those located further apart. This finding motivates us to develop the vector autoregressive model and the extended dynamic spatio-temporal model to emulate the spatio-temporal correlations of the real-world electric load time series. The testing results show that both models effectively capture the spatio-temporal patterns in the real-world electric load time series. Compared to the traditional vector autoregressive model, the proposed extended dynamic spatio-temporal model not only provides more accurate spatio-temporal electric load forecast but also obtains a parsimonious description of the high dimensional dataset. 
    more » « less
  2. Time series forecasting with additional spatial information has attracted a tremendous amount of attention in recent research, due to its importance in various real-world applications on social studies, such as conflict prediction and pandemic forecasting. Conventional machine learning methods either consider temporal dependencies only, or treat spatial and temporal relations as two separate autoregressive models, namely, space-time autoregressive models. Such methods suffer when it comes to long-term forecasting or predictions for large-scale areas, due to the high nonlinearity and complexity of spatio-temporal data. In this paper, we propose to address these challenges using spatio-temporal graph neural networks. Empirical results on Violence Early Warning System (ViEWS) dataset and U.S. Covid-19 dataset indicate that our method significantly improved performance over the baseline approaches. 
    more » « less
  3. null (Ed.)
    Urban flooding is a major natural disaster that poses a serious threat to the urban environment. It is highly demanded that the flood extent can be mapped in near real-time for disaster rescue and relief missions, reconstruction efforts, and financial loss evaluation. Many efforts have been taken to identify the flooding zones with remote sensing data and image processing techniques. Unfortunately, the near real-time production of accurate flood maps over impacted urban areas has not been well investigated due to three major issues. (1) Satellite imagery with high spatial resolution over urban areas usually has nonhomogeneous background due to different types of objects such as buildings, moving vehicles, and road networks. As such, classical machine learning approaches hardly can model the spatial relationship between sample pixels in the flooding area. (2) Handcrafted features associated with the data are usually required as input for conventional flood mapping models, which may not be able to fully utilize the underlying patterns of a large number of available data. (3) High-resolution optical imagery often has varied pixel digital numbers (DNs) for the same ground objects as a result of highly inconsistent illumination conditions during a flood. Accordingly, traditional methods of flood mapping have major limitations in generalization based on testing data. To address the aforementioned issues in urban flood mapping, we developed a patch similarity convolutional neural network (PSNet) using satellite multispectral surface reflectance imagery before and after flooding with a spatial resolution of 3 meters. We used spectral reflectance instead of raw pixel DNs so that the influence of inconsistent illumination caused by varied weather conditions at the time of data collection can be greatly reduced. Such consistent spectral reflectance data also enhance the generalization capability of the proposed model. Experiments on the high resolution imagery before and after the urban flooding events (i.e., the 2017 Hurricane Harvey and the 2018 Hurricane Florence) showed that the developed PSNet can produce urban flood maps with consistently high precision, recall, F1 score, and overall accuracy compared with baseline classification models including support vector machine, decision tree, random forest, and AdaBoost, which were often poor in either precision or recall. The study paves the way to fuse bi-temporal remote sensing images for near real-time precision damage mapping associated with other types of natural hazards (e.g., wildfires and earthquakes). 
    more » « less
  4. null (Ed.)
    The COVID-19 pandemic has posed grand challenges to policy makers, raising major social conflicts between public health and economic resilience. Policies such as closure or reopen of businesses are made based on scientific projections of infection risks obtained from infection dynamics models. While most parameters in infection dynamics models can be set using domain knowledge of COVID-19, a key parameter - human mobility - is often challenging to estimate due to complex social contexts and limited training data under escalating COVID-19 conditions. To address these challenges, we formulate the problem as a spatio-temporal data generation problem and propose COVID-GAN, a spatio-temporal Conditional Generative Adversarial Network, to estimate mobility (e.g., changes in POI visits) under various real-world conditions (e.g., COVID-19 severity, local policy interventions) integrated from multiple data sources. We also introduce a domain-constraint correction layer in the generator of COVID-GAN to reduce the difficulty of learning. Experiments using urban mobility data derived from cell phone records and census data show that COVID-GAN can well approximate real-world human mobility responses, and that the proposed domain-constraint based correction can greatly improve solution quality. 
    more » « less
  5. null (Ed.)
    Climate change and sea-level rise are increasingly leading to higher and prolonged high tides, which, in combination with the growing intensity of rainfall and storm surges, and insufficient drainage infrastructure, result in frequent recurrent flooding in coastal cities. There is a pressing need to understand the occurrence of roadway flooding incidents in order to enact appropriate mitigation measures. Agency data for roadway flooding events are scarce and resource-intensive to collect. Crowdsourced data can provide a low-cost alternative for mapping roadway flood incidents in real time; however, the reliability is questionable. This research demonstrates a framework for asserting trustworthiness on crowdsourced flood incident data in a case study of Norfolk, Virginia. Publicly available (but spatially limited) flood incident data from the city in combination with different environmental and topographical factors are used to create a logistic regression model to predict the probability of roadway flooding at any location on the roadway network. The prediction accuracy of the model was found to be 90.5%. When applying this model to crowdsourced Waze flood incident data, 71.7% of the reports were predicted to be trustworthy. This study demonstrates the potential for using Waze incident report data for roadway flooding detection, providing a framework for cities to identify trustworthy reports in real time to enable rapid situation assessment and mitigation to reduce incident impact. 
    more » « less