The polar and high latitude regions of the ionosphere are host to complex plasma processes involving Magnetosphere-Ionosphere (MI) coupling, plasma convection, and auroral dynamics. The magnetic field lines from the polar cusp down through the auroral region map out to the magnetosphere and project the footprint of the large-scale convective processes driven by the solar wind onto the ionosphere. This region is also a unique environment where the magnetic field is oriented nearly vertical, resulting in horizontal drifts along closed, localized, convection patterns, and where prolonged periods of darkness during the winter result in the absence of significant photoionization. This set of conditions results in unique ionospheric structures which can set the stage for the generation of the gradient drift instability (GDI). The GDI occurs when the density gradient and ExB plasma drift are in the same direction. The GDI is a source of structuring at density gradients and may give rise to ionospheric irregularities that impact over-the-horizon radars and GPS signals. While the plasma ExB drifts are supplied by magnetospheric convection and MI coupling, sharp density gradients in the polar regions will be present at polar holes. Since the GDI occurs where the density gradient and plasma drift are parallel, the ionospheric irregularities caused by the GDI should occur at the leading edge of the polar hole. If so, the resulting production of small-scale density irregularities may, if the density is high enough, give rise to scintillation of GNSS signals and backscatter on HF radars. In this study, we investigate whether these irregularities can occur at the edges of polar holes as detected by the HF radar scatter. We use the Ionospheric Data Assimilation 4-Dimentional (IDA4D) and Assimilative Mapping of Ionospheric Electrodynamics (AMIE) models to characterize the high latitude ionospheric density and ExB drift convective structures, respectively, for one of nine polar hole events identified using RISR-N incoherent scatter radar in Forsythe et al [2021]. The combined IDA4D and AMIE assimilative outputs indicate where the GDI could be triggered, e.g., locations where the density gradient and ExB drift velocity have parallel components and the growth rate is smaller than the characteristic time over which the convective pattern changes, in this case, ~1/15 min. The presence of decameter ionospheric plasma irregularities is detected using the Super Dual Auroral Radar Network (SuperDARN). SuperDARN radars are HF coherent scatter radars. The presence of ionospheric radar returns in regions unstable to GDI grown strongly suggest the GDI is producing decameter scale plasma irregularities. The statistical analyses conducted in the above investigation do not show a clear pattern of enhanced scatter with larger computed GDI growth rates. Further investigation must be conducted before concluding that the GDI does not cause irregularities detectable with HF radar at polar holes.
more »
« less
Predicting Equatorial Ionospheric Convective Instability Using Machine Learning
Abstract The numerical forecast methods used to predict ionospheric convective plasma instabilities associated with Equatorial Spread‐F(ESF) have limited accuracy and are often computationally expensive. We test whether it is possible to bypass first‐principle numeric simulations and forecast irregularities using machine learning models. The data are obtained from the incoherent scatter radar at the Jicamarca Radio Observatory located in Lima, Peru. Our models map vertical plasma drifts, time, and solar activity to the occurrence and location of clusters of echoes telltale of ionospheric irregularities. Our results show that these models are capable of identifying the predictive power of the tested inputs, obtaining accuracies around 75%.
more »
« less
- PAR ID:
- 10522853
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Space Weather
- Volume:
- 21
- Issue:
- 12
- ISSN:
- 1542-7390
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The occurrence of plasma irregularities and ionospheric scintillation over the Caribbean region have been reported in previous studies, but a better understanding of the source and conditions leading to these events is still needed. In December 2021, three ground-based ionospheric scintillation and Total Electron Content monitors were installed at different locations over Puerto Rico to better understand the occurrence of ionospheric irregularities in the region and to quantify their impact on transionospheric signals. Here, the findings for an event that occurred on March 13–14, 2022 are reported. The measurements made by the ground-based instrumentation indicated that ionospheric irregularities and scintillation originated at low latitudes and propagated, subsequently, to mid-latitudes. Imaging of the ionospheric F-region over a wide range of latitudes provided by the GOLD mission confirmed, unequivocally, that the observed irregularities and the scintillation were indeed caused by extreme equatorial plasma bubbles, that is, bubbles that reach abnormally high apex heights. The joint ground- and space-based observations show that plasma bubbles reached apex heights exceeding 2600 km and magnetic dip latitudes beyond 28 ° . In addition to the identification of extreme plasma bubbles as the source of the ionospheric perturbations over low-to-mid latitudes, GOLD observations also provided experimental evidence of the background ionospheric conditions leading to the abnormally high rise of the plasma bubbles and to severe L-band scintillation. These conditions are in good agreement with the theoretical hypothesis previously proposed. Graphical Abstractmore » « less
-
Abstract The ground‐based, high‐frequency radars of the Super Dual Auroral Radar Network (SuperDARN) observe backscatter from ionospheric field‐aligned plasma irregularities and features on the Earth's surface out to ranges of several thousand kilometers via over‐the‐horizon propagation of transmitted radio waves. Interferometric techniques can be applied to the received signals at the primary and secondary antenna arrays to measure the vertical angle of arrival, or elevation angle, for more accurate geolocation of SuperDARN observations. However, the calibration of SuperDARN interferometer measurements remains challenging for several reasons, including a 2πphase ambiguity when solving for the time delay correction factor needed to account for differences in the electrical path lengths between signals received at the two antenna arrays. We present a new technique using multi‐frequency ionospheric and ground backscatter observations for the calibration of SuperDARN interferometer data, and demonstrate its application to both historical and recent data.more » « less
-
This study’s objective is to better specify the rare occurrence of super equatorial plasma bubbles in particular to the European longitude sector, detailing their spatio-temporal evolution, and better understanding pre-conditions for their development. Our comprehensive multi-instrument analysis combined ground-based and space observations from GNSS, ionosondes, and several satellite missions (COSMIC-2, GOLD, Swarm). We have investigated the ionospheric response to the 23–24 April 2023 severe geomagnetic storm and have shown the formation of super plasma bubbles expanding from equatorial latitudes to middle latitudes in the European/African sector during the main phase of the storm. Formation of these super bubbles was associated with storm-induced prompt penetration electric fields. We found that the area affected by the formation of numerous plasma bubbles covered more than 5000 km ranging from 30°W to 30°E in the Atlantic/African sector. The bubbles also had an impressive north-south extension, reaching as far poleward as ~30°–35° latitude in both hemispheres. After 20 UT on 23 April 2023, the zone with equatorial ionospheric irregularities reached Northern Africa, the Iberian Peninsula (Spain, Portugal) and the Mediterranean Sea in southern Europe, including areas of the Canary Islands (Spain) and the Azores and Madeira Islands (Portugal) in the Atlantic Ocean. The ionospheric irregularities persisted for 5–6 h and began to fade after ~01 UT on 24 April 2023. COSMIC-2 scintillation measurements showed intense amplitude scintillations (S4 above 0.8) across this entire region, indicating presence of small-scale ionospheric irregularities inside the extended plasma bubbles. During this storm, EGNOS (European Geostationary Navigation Overlay Service) experienced degraded performance, with significant navigation errors recorded at its southernmost stations in Northern Africa, Spain, Portugal, and their territories, which were affected by super plasma bubbles. This paper presents conclusive observational evidence showing development of the super plasma bubbles significantly expanding into the southern Europe and northern Africa region under geomagnetically disturbed conditions in April 2023.more » « less
-
Abstract Plasma irregularities in the ionosphere induce scintillation of radio signals. Radio occultation (RO) observations of the Global Navigation Satellite Systems (GNSS) signals from low Earth orbit (LEO) allow monitoring of the ionospheric scintillation. Under certain conditions, it is possible to localize (geolocate) plasma irregularities along the line‐of‐sight between the GNSS and LEO satellites. While several techniques have been considered for the localization, in this study we use the back propagation (BP) of complex RO signals (phase and amplitude) measured at a high rate (HR), 50–100 Hz. Our method is based on a numerical solution of the wave equation, originally proposed for geolocation in 2002, with some modifications. We consider theoretical aspects of the BP technique, including assumptions, approximations and limitations, and perform numerical modeling of radio wave propagation. We investigate geolocation by BP for two regions with aligned and mis‐aligned irregularities and explain multi‐valued geolocations. We focus on the equatorial F region, consistent with the COSMIC‐2 observation sampling and use the IGRF‐13 model of the Earth's magnetic field to define the orientation of plasma irregularities. We use our method for processing of COSMIC‐2 HR scintillation data collected from the precise orbit determination antennas for 2 years: 2021 and 2023 (years with low and high solar activity). The results, represented by gridded monthly maps of geolocations, show clear seasonal and interannual variations. Additionally, we present comparison of the geolocations obtained independently from L1 and L2 signals for a 2‐month period.more » « less
An official website of the United States government

