skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Autonomous observations of biogenic N2 in the Eastern Tropical North Pacific using profiling floats equipped with gas tension devices
Oxygen Deficient Zones (ODZs) of the world’s oceans represent a relatively small fraction of the ocean by volume (<0.05% for suboxic and<5% for hypoxic) yet are receiving increased attention by experimentalists and modelers due to their importance in ocean nutrient cycling and predicted susceptibility to expansion and/or contraction forced by global warming. Conventional methods to study these biogeochemically important regions of the ocean have relied on well-developed but still relatively high cost and labor-intensive shipboard methods that include mass-spectrometric analysis of nitrogen-to-argon ratios (N2/Ar) and nutrient stoichiometry (relative abundance of nitrate, nitrite, and phosphate). Experimental studies of denitrification rates and processes typically involve eitherin-situorin-vitroincubations using isotopically labeled nutrients. Over the last several years we have been developing a Gas Tension Device (GTD) to study ODZ denitrification including deployment in the largest ODZ, the Eastern Tropical North Pacific (ETNP). The GTD measures total dissolved gas pressure from which dissolved N2concentration is calculated. Data from two cruises passing through the core of the ETNP near 17 °N in late 2020 and 2021 are presented, with additional comparisons at 12 °N for GTDs mounted on a rosette/CTD as well as modified profiling Argo-style floats. Gas tension was measured on the float with an accuracy of< 0.1% and relatively low precision (< 0.12%) when shallow (P< 200 dbar) and high precision (< 0.03%) when deep (P > 300 dbar). We discriminate biologically produced N2(ie., denitrification) from N2in excess of saturation due to physical processes (e.g., mixing) using a new tracer – ‘preformed excess-N2’. We used inert dissolved argon (Ar) to help test the assumption that preformed excess-N2is indeed conservative. We used the shipboard measurements to quantify preformed excess-N2by cross-calibrating the gas tension method to the nutrient-deficit method. At 17 °N preformed excess-N2decreased from approximately 28 to 12 µmol/kg over σ0 =24–27 kg/m3with a resulting precision of ±1 µmol N2/kg; at 12 °N values were similar except in the potential density range of 25.7< σ0< 26.3 where they were lower by 1 µmol N2/kg due likely to being composed of different source waters. We then applied these results to gas tension and O2(< 3 µmol O2/kg) profiles measured by the nearby float to obtain the first autonomous biogenic N2profile in the open ocean with an RMSE of ± 0.78 µM N2, or ± 19%. We also assessed the potential of the method to measure denitrification rates directly from the accumulation of biogenic N2during the float drifts between profiling. The results suggest biogenic N2rates of ±20 nM N2/day could be detected over >16 days (positive rates would indicate denitrification processes whereas negative rates would indicate predominantly dilution by mixing). These new observations demonstrate the potential of the gas tension method to determine biogenic N2accurately and precisely in future studies of ODZs.  more » « less
Award ID(s):
1851210 1851361
PAR ID:
10523551
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
FrontiersIn.org
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
10
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Using standard calibration schemes commercial oxygen optode sensors typically yield oxygen concentrations in the range of 2-4 umol/kg under anoxic conditions. They are thus unable to detect the roughly 0.1 umol/kg levels of oceanic functional anoxia. Here, a modified Stern-Volmer equation is used to characterize and calibrate 26 optodes deployed on 16 autonomous floats in the Eastern Tropical Pacific (ETNP) oxygen deficient zone (ODZ) using a combination of manufacturers', laboratory, and in-situ data. Laboratory calibrations lasting several months and conducted over 2 years show that optodes kept under anoxic conditions drift at rates of order 0.2 umol/kg/yr, with much higher drifts in the first month. The initial transient is plausibly due to the degassing of plastic components of the optodes and might be reduced by replacing these with metal. Oxygen concentrations measured by these calibrated optodes in the nearly anoxic ODZ core of the ETNP deviated from both the laboratory calibrations and ship-based STOX measurements by similar amounts. Thus with current sensors, an in-situ anoxic oxygen calibration only once or twice a year is needed to maintain an accuracy close to 0.2 umol/kg. An algorithm to find the anoxic cores of the ETNP ODZ is developed and used to remove the drift in the float optodes to this accuracy. This is an order-of-magnitude improvement in the low oxygen performance of the optodes and could be implemented on the existing database of Argo oxygen floats to map the geography of functional anoxia. This dataset contains the raw float data, the float data calibrated using the manufacturers’ schemes and our new scheme. The calibration points and our final calibration constants, as well as the STOX data used to validate our new calibrations, are included. Data was collected on 10 custom-built profiling 'ODZ' floats equipped with oxygen optodes and gas tension devices and on 6 standard Argo floats with oxygen sensors. Argo data was processed by Argo and recalibrated at APL/UW. ODZ float data was processed at APL/UW as described in the associated manuscript. # Oxygen data from Eastern Tropical North Pacific cruises and floats 2021-2022 [https://doi.org/10.5061/dryad.8kprr4xwk](https://doi.org/10.5061/dryad.8kprr4xwk) ## Description of the data and file structure ## **ODZ Level2.zip** contains scientific data for the ODZ floats converted from raw data using nominal calibrations. Level_2 in NASAspeak. A README, Diagnostic plots, and a Matlab conversion program are included.  The script ***MRVFloatDecode_2023.m*** reads the raw files for the ODZ floats and puts them in a single Matlab file **xo110-.mat** where the first is the float number and the second is the boot number. It makes lots of plots, which I also include. Matlab substructures and variables are: ***CTD*** – Structure containing Seabird 41CT data * P, T, S – pressure [dbar], temperature [deg C], practica salinity as computed by Seabird [psu] * time, mtime – time in Matlab datetime and datenum formats * SA, CT, Sig0 – Absolute salinity [g/kg], conservative temperature [deg C], potential density [kg/m^3] * CC, W, Drag–estimated oil volume [cc], vertical velocity [m/s], Drag force (for ballasting) [N] ***GPS*** – position * time, mtime - time as Matlab datetime, Matlab datnum * lat,lon- location degrees latitude, degrees longitude * nsat, hdop – number of satellites, horizontal dilution of precision ***GTD*** – Gas Tension Sensor * time, mtime - time as Matlab datetime, Matlab datnum, * P, T, S, Sig0 – Pressure [dbar], temperature [deg C], practical salinity [psu], potential density [kg/m^3] * GT – gas tension [mbar] * Tgtd – temperature of GTD [ deg C]  * Ref- time [matlab datenum], temperature [deg C], pressure [mbar] for reference sensor * Other variables are calibration constants and check values. ***SBE5M1,SBE5M2*** - status of pumps. 1 is for optode(1) and GTD. 2 is for reference optod  ***oldGTD*** - One float had an old-style GTD for reference.  ***optode*** - SBE63 optodes (1) is water optode, (2) is reference optode * time, time -time as Matlab datum and date time * SN – optode serial number * red_amp, blue_amp- amplitudes of red and blue LEDs [counts] * red-phase, blue-phase- phases [microvolts] of fluorescence phase. * O2phase- their difference [microvolts] used to compute oxygen * T – optode temperature [deg C] * O2uM – optode’s computed oxygen concentration converted to uMol/kg. * Tctd, S, P, Sig0 – CTD interpolated to optode time - temperature [deg C], practical salinity [psu], pressure [dbar], potential density [kg/m^3] ***ADC, AirPump, AirValve, OilPump,*** ***OilValve*** - structures diagnosing the buoyancy system operations. Scientfically uninteresting. ## ***STOX Oxygen Profiles.zip*** Contains high precision oxygen profiles taken on the two Sally Ride cruises using STOX oxygen sensors. The data is provided as .txt and .mat formats along with miscellaneous data from the CTD. Oxygen measurements from the floats were referenced to STOX oxygen profiles taken from the ship on the two cruises because these provide much more stable and high precision measurements. STOX sensors are described in detail in Revsbech, N. P.; Larsen, L. H.; Gundersen, J.; Dalsgaard, T.; Ulloa, O. and Thamdrup, B. ( 2009) Determination of ultra‐low oxygen concentrations in oxygen minimum zones by the STOX sensor. Limnology and Oceanography: Methods, 7, pp.371-381. DOI:10.4319/lom.2009.7.371. And from their manufacturer [https://unisense.com/products/stox-microsensor/](https://unisense.com/products/stox-microsensor/) STOX data was collected on two cruises of the research vessel, Sally Ride, SR 2114 and SR2011. Data from each CTD cast with a STOX profile is in a separate folder in this archive. In each, the raw data is in a ****.txt*** file and the converted Matlab data is in a ****.mat*** file. MATLAB scripts to read the ****.mat*** file are included in each folder. Data names and units are: Ship Cruise Station Cast Year Month Day Hour Minute * Depth [m] * Latitude [deg]  * Longitude [deg] * Density [sigma-theta,kg/m^3]  * Temperature [ºC]  * Salinity * Beam Attenuation [1/m] * Fluorescence [mg Chla/m3]  * PAR [umol/m2/s] * Oxygen_SBE [µmol/kg]) * Oxygen_STOX [µmol/kg] * STOX_SD [µmol/kg] * STOX_n [µmol/kg] * NO3-Suna [uM] ## **Optode Calibration.zip**  Contains all of the calibration data used to calibrate the optodes including the anoxic laboratory points, the manufacturers' calibration points, and the coefficients of the calibration model for each optode.  **Seabird 63 Optodes** Anoxic calibration data and model fit are in ***AnoxicCalibration/SBE63/2020/*** and ***/2021/***. The 2020 data was used in the final calibration. * Files are *******Tau0model.mat*** where **** is the optode serial number * Variable ***meta*** explains each variable, repeated here. Calibration model is '1./Taup.*exp(-(Etau+Etau2.*(K-283.15).^2)/R/K )*(1+Drift *(days since start) )' Variables are * Taup: 'Phase [uS]' * Etau: 'Energy is Etau+Etau2*(T-10C) [J/mol] * Drift: 'Drift coefficient in the model [1/days] * Ttau: 'Time scale of drift [days] * Drift_uSday: 'Model Drift uS/day' * Dcal: 'Robust Drift. The drift line is Dcal(2)+ Dcal(1)*(Yearday of 2021) in uMol. Drift is Dcal(1) [uMol/day] * Drms: 'RMS drift fit error [uS] * Derr: 'Uncertainty in Dcal; Drift uncertainty is Derr(1) [uMol/day]'  Calibration points from the anoxic tank are in structure ***RawS.*** Variable ***meta*** explains each variable, repeated here. * K: 'Temperature [Kelvin]' * O2phase: 'O2 phase tau [uS]' * R: 'Gas constant [J/K/mol] * dyd: 'Time since start of record [days]' * TIME: 'Time [matlab datetime] * Omodel: 'Tau computed from model with drift [uS] * OmodelND: 'Tau computed from model with drift removed [uS] **Full Calibration/** contains the oxic calibration points and calibration coefficients Calibration points from Seabird supplied with optode are in **SBE63/*FactoryCalibration/ ****_dd_mmm_yyyy.mat ***where **** is the optode serial number. The calibration date follows. Variables are * Caltime - Calibration time [matlab datum] * ID - Serial number * O2in_mll - Oxygen in tank from winklers [ml/L] * O2out_mll - Oxygen computed from Seabird calibration [ml/L] * S - Salinity [psu] * T - Temperature [deg C] * resid_mll - model residual [ml/L] * tau_us - optode phase lag [microseconds] The oxic part of the optode model calibration coefficients are in ***SBE63/Calfiles/*** Calibration model, coefficients, and check values are in ***Calfiles/_oxic_model.mat*** where **** is the optode SN Data is in structure ***Kfile*** ***Kfile.meta*** explains the variables, repeated here. Model is pO2=eta/K(T) * (1 + a(T)*eta^2.3)^q(T) ; eta= tau0(T)/tau-1.  Note that tau0(T) is computed from *******_Tau0model.mat*** coefficients above. Variables are * Check: 'Test values of T, Tau, and pO2 from SBE cal' * Lk: 'K(T)=polyval(Lk, T) - Matlab call to compute K from Lk polynomial coefficients and T [deg C] * La: 'a(T)=polyval(La,T)' * Lq: 'q(T)=polyval(Lq,T)' **Aanderaa 4330 Optodes** **Anoxic calibration** data and model fit is in ***AnoxicCalibration/AA/*** \**                  **File names and formats are the same as for SBE63 optodes **Full Calibration/AA** **/Factory Calibrations** contains the calibration information supplied with the optodes Files are *******_dd-mmm-yyyy.mat*** with the same format as for the SBE63 The relevant variables are: * Caltime - Calibration time [matlab datenum] * ID - Serial number of optode * O2in_uMol - Calibration bath oxygen [uMol/L] * S - Salinity [psu] * T - Temperature from optode [deg C] * tau_deg - optode output phase [degrees] * meta - Misc information **/Calfiles/********_M0_oxic_model.mat** contain oxic part of the optode model calibration coefficients The format is the same as for SBE63, but there is an extra variable * eta_off: Add this to eta to account for drift since calibration [uS] ## **Calibrated Oxygen.zip** contains both uncalibrated and calibrated optode data for both the ODZ and Argo floats. A README file and Matlab processing programs are included. /***SBE63/xo110**-***.mat*** contain the calibrated data for **ODZ float xo110** Format and data is identical to that in the ***optode*** structure in ***ODZ_Level2_Mat,*** but with 2 extra variables * pO2 – partial pressure of oxygen [mbar] in uncalibrated data * Cal – a structure containing calibrated data -- FINAL DATA IS HERE * pO2: partial pressure of oxygen [mbar] in calibrated data  * Tau0m: Calibration model of anoxic phase [microsecond]. Includes offset. * Tau: Measured phase [microsecond] * Tauoff: offset in Tau from in situ calibration [uS] * eta: (Tau0m+Tauoff)/Tau-1 * O2uM: oxygen concentration [micromoles/kg] * O2umol: same Note that optode(1) is the water oxygen. Optode(2) is a reference optode, which is not of scientific interest.  **/SBE63/Reprocess_SBE63.m** is a MATLAB script showing how to combine calibration data and float data to make calibrated data for SBE63 optodes **/AA/Mat/*FloatID*/*FloatID_profilenum*.mat** contains Argo float data from float FloatID, profile number profilenum. Variables are Data from Argos float archive * mtime, time - time in datetime and datenum formats * lat, lon - GPS position latitude degrees and longitude degrees * P, T, S - CTD pressure [dbar], temperature [deg C], salinity [psu] * Optode - Optode serial number * O2T - Optode temperature [deg C] * O2phase - Optode phase [degrees] * O2umol - Optode oxygen [micromole/kg] Added variables * Kfile - Structure as in Optode Calibration files. Kfile.meta also has metadata * Cal - Structure containing calibrated optode data on the same timebase * Tau - measured phase [degrees] * Tau0m - Model anoxic phase [degrees] * Tauoff - Offset from laboratory calibration [degrees]. Includes offset & drift. * Drift - Drift [degrees/year] * mtime0 - base time for drift [matlab datenum format] * eta - Tau0m/Tau-1 * pO2 - Calibrated Oxygen partial pressure [mbar] * O2umol - Calibrated Oxygen concentration [micromole/kg] * meta - similar list to this one. * SN - same as Optode * Float - FloatID **/AA/Mat/*FloatID*/*FloatID_profilenum*.xls** contains the calibrated data in Excel format ***/AA/Reprocess_3_AA.m*** is a MATLAB script showing how to combine calibration data and float data to make calibrated data for AA optodes ## ***ODZ Raw\.zip*** contains the raw data from 9 custom-built ODZ floats. Level_1 in NASAspeak. They can be read by ***MRVFloatDecode_2023.m*** included in ***ODZ Level 2 files*** ## Code/Software Processing and reading scripts in Matlab (24.1.0.2628055 (R2024a) Update 4) are provided. 
    more » « less
  2. The impact of global warming on the ocean’s oxygen-deficient zones (ODZs) is uncertain, partly because of a lack of data on past changes. We report monthly resolved records of coral skeleton–bound nitrogen isotopes (CS-δ15N) to reconstruct denitrification in the Eastern Tropical North Pacific (ETNP) ODZ over the last 80 years. The data indicate strong decadal variation in ETNP denitrification, with maxima during the cool North Pacific phase of Pacific Decadal Variability. The maxima in denitrification (and thus oxygen deficiency) were likely due to stronger upwelling that enhanced productivity leading to greater oxygen demand in the thermocline. Prior findings of multidecadal-to-centennial ODZ trends were likely biased by this variability. ODZ evolution over the next century will depend on how global warming interacts with the decadal oscillations. 
    more » « less
  3. Abstract The distributions of iodate (IO3), iodide (I), nitrite (NO2), and oxygen (O2) were determined on two zonal transects and one meridional transect in the Eastern Tropical North Pacific (ETNP) in 2018. Iodine is a useful tracer of in situ redox transformations and inputs within the water column from continental margins. In oxygenated waters, iodine is predominantly present as oxidized iodate. In the oxygen deficient zone (ODZ) in the ETNP, a substantial fraction is reduced to iodide, with the highest iodide concentrations coincident with the secondary nitrite maxima. These features resemble ODZs in the Arabian Sea and Eastern Tropical South Pacific (ETSP). Maxima in iodide and nitrite were associated with a specific water mass, referred to as the 13 °C Water, the same water mass that contains the highest concentrations of iodide within the ETSP. Physical processes leading to patchiness in the 13 °C Water relative to other water masses could account for the patchiness frequently observed in iodide and nitrite, probably reflecting subsurface mesoscale features such as eddies. Throughout much of the ETNP ODZ, iodine concentrations were higher than the mean oceanic value. This “excess iodine” is attributed to lateral inputs from sedimentary margins. Excess iodine maxima are centered within a potential density of 26.2–26.6 kg/m3, a density range that intersects with reducing shelf sediments and is almost identical to the ETSP. Evidently, margin input processes are significant throughout the basin and can influence the nitrogen and iron cycles as well, as in the ETSP. 
    more » « less
  4. Abstract Oxygen deficient zones (ODZs) account for about 30% of total oceanic fixed nitrogen loss via processes including denitrification, a microbially mediated pathway proceeding stepwise from NO3− to N2. This process may be performed entirely by complete denitrifiers capable of all four enzymatic steps, but many organisms possess only partial denitrification pathways, either producing or consuming key intermediates such as the greenhouse gas N2O. Metagenomics and marker gene surveys have revealed a diversity of denitrification genes within ODZs, but whether these genes co-occur within complete or partial denitrifiers and the identities of denitrifying taxa remain open questions. We assemble genomes from metagenomes spanning the ETNP and Arabian Sea, and map these metagenome-assembled genomes (MAGs) to 56 metagenomes from all three major ODZs to reveal the predominance of partial denitrifiers, particularly single-step denitrifiers. We find niche differentiation among nitrogen-cycling organisms, with communities performing each nitrogen transformation distinct in taxonomic identity and motility traits. Our collection of 962 MAGs presents the largest collection of pelagic ODZ microorganisms and reveals a clearer picture of the nitrogen cycling community within this environment. 
    more » « less
  5. Abstract All else equal, if the ocean's “biological [carbon] pump” strengthens, the dissolved oxygen (O2) content of the ocean interior declines. Confidence is now high that the ocean interior as a whole contained less oxygen during the ice ages. This is strong evidence that the ocean's biological pump stored more carbon in the ocean interior during the ice ages, providing the core of an explanation for the lower atmospheric carbon dioxide (CO2) concentrations of the ice ages. Vollmer et al. (2022,https://doi.org/10.1029/2021PA004339) combine proxies for the oxygen and nutrient content of bottom waters to show that the ocean nutrient reservoir was more completely harnessed by the biological pump during the Last Glacial Maximum, with an increase in the proportion of dissolved nutrients in the ocean interior that were “regenerated” (transported as sinking organic matter from the ocean surface to the interior) rather than “preformed” (transported to the interior as dissolved nutrients by ocean circulation). This points to changes in the Southern Ocean, the dominant source of preformed nutrients in the modern ocean, with an apparent additional contribution from a decline in the preformed nutrient content of North Atlantic‐formed interior water. Vollmer et al. also find a lack of LGM‐to‐Holocene difference in the preformed13C/12C ratio of dissolved inorganic carbon. This finding may allow future studies to resolve which of the proposed Southern Ocean mechanisms was most responsible for enhanced ocean CO2storage during the ice ages: (a) coupled changes in ocean circulation and biological productivity, or (b) physical limitations on air‐sea gas exchange. 
    more » « less