Abstract The distributions of iodate (IO3−), iodide (I−), nitrite (NO2−), and oxygen (O2) were determined on two zonal transects and one meridional transect in the Eastern Tropical North Pacific (ETNP) in 2018. Iodine is a useful tracer of in situ redox transformations and inputs within the water column from continental margins. In oxygenated waters, iodine is predominantly present as oxidized iodate. In the oxygen deficient zone (ODZ) in the ETNP, a substantial fraction is reduced to iodide, with the highest iodide concentrations coincident with the secondary nitrite maxima. These features resemble ODZs in the Arabian Sea and Eastern Tropical South Pacific (ETSP). Maxima in iodide and nitrite were associated with a specific water mass, referred to as the 13 °C Water, the same water mass that contains the highest concentrations of iodide within the ETSP. Physical processes leading to patchiness in the 13 °C Water relative to other water masses could account for the patchiness frequently observed in iodide and nitrite, probably reflecting subsurface mesoscale features such as eddies. Throughout much of the ETNP ODZ, iodine concentrations were higher than the mean oceanic value. This “excess iodine” is attributed to lateral inputs from sedimentary margins. Excess iodine maxima are centered within a potential density of 26.2–26.6 kg/m3, a density range that intersects with reducing shelf sediments and is almost identical to the ETSP. Evidently, margin input processes are significant throughout the basin and can influence the nitrogen and iron cycles as well, as in the ETSP.
more »
« less
Autonomous observations of biogenic N2 in the Eastern Tropical North Pacific using profiling floats equipped with gas tension devices
Oxygen Deficient Zones (ODZs) of the world’s oceans represent a relatively small fraction of the ocean by volume (<0.05% for suboxic and<5% for hypoxic) yet are receiving increased attention by experimentalists and modelers due to their importance in ocean nutrient cycling and predicted susceptibility to expansion and/or contraction forced by global warming. Conventional methods to study these biogeochemically important regions of the ocean have relied on well-developed but still relatively high cost and labor-intensive shipboard methods that include mass-spectrometric analysis of nitrogen-to-argon ratios (N2/Ar) and nutrient stoichiometry (relative abundance of nitrate, nitrite, and phosphate). Experimental studies of denitrification rates and processes typically involve eitherin-situorin-vitroincubations using isotopically labeled nutrients. Over the last several years we have been developing a Gas Tension Device (GTD) to study ODZ denitrification including deployment in the largest ODZ, the Eastern Tropical North Pacific (ETNP). The GTD measures total dissolved gas pressure from which dissolved N2concentration is calculated. Data from two cruises passing through the core of the ETNP near 17 °N in late 2020 and 2021 are presented, with additional comparisons at 12 °N for GTDs mounted on a rosette/CTD as well as modified profiling Argo-style floats. Gas tension was measured on the float with an accuracy of< 0.1% and relatively low precision (< 0.12%) when shallow (P< 200 dbar) and high precision (< 0.03%) when deep (P > 300 dbar). We discriminate biologically produced N2(ie., denitrification) from N2in excess of saturation due to physical processes (e.g., mixing) using a new tracer – ‘preformed excess-N2’. We used inert dissolved argon (Ar) to help test the assumption that preformed excess-N2is indeed conservative. We used the shipboard measurements to quantify preformed excess-N2by cross-calibrating the gas tension method to the nutrient-deficit method. At 17 °N preformed excess-N2decreased from approximately 28 to 12 µmol/kg over σ0 =24–27 kg/m3with a resulting precision of ±1 µmol N2/kg; at 12 °N values were similar except in the potential density range of 25.7< σ0< 26.3 where they were lower by 1 µmol N2/kg due likely to being composed of different source waters. We then applied these results to gas tension and O2(< 3 µmol O2/kg) profiles measured by the nearby float to obtain the first autonomous biogenic N2profile in the open ocean with an RMSE of ± 0.78 µM N2, or ± 19%. We also assessed the potential of the method to measure denitrification rates directly from the accumulation of biogenic N2during the float drifts between profiling. The results suggest biogenic N2rates of ±20 nM N2/day could be detected over >16 days (positive rates would indicate denitrification processes whereas negative rates would indicate predominantly dilution by mixing). These new observations demonstrate the potential of the gas tension method to determine biogenic N2accurately and precisely in future studies of ODZs.
more »
« less
- PAR ID:
- 10523551
- Publisher / Repository:
- FrontiersIn.org
- Date Published:
- Journal Name:
- Frontiers in Marine Science
- Volume:
- 10
- ISSN:
- 2296-7745
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Profiles of oxygen measurements from Argo profiling floats now vastly outnumber shipboard profiles. To correct for drift, float oxygen data are often initially adjusted to deployment casts, ship‐based climatologies, or, recently, measurements of atmospheric oxygen for in situ calibration. Air calibration enables accurate measurements in the upper ocean but may not provide similar accuracy at depth. Using a quality controlled shipboard data set, we find that the entire Argo oxygen data set is offset relative to shipboard measurements (float minus ship) at pressures of 1,450–2,000 db by a median of −1.9 μmol kg−1(mean ± SD of −1.9 ± 3.9, 95% confidence interval around the mean of {−2.2, −1.6}) and air‐calibrated floats are offset by −2.7 μmol kg−1(−3.0 ± 3.4 (CI95%{−3.7, −2.4}). The difference between float and shipboard oxygen is likely due to offsets in the float oxygen data and not oxygen changes at depth or biases in the shipboard data set. In addition to complicating the calculation of long‐term ocean oxygen changes, these float oxygen offsets impact the adjustment of float nitrate and pH measurements, therefore biasing important derived quantities such as the partial pressure of CO2(pCO2) and dissolved inorganic carbon. Correcting floats with air‐calibrated oxygen sensors for the float‐ship oxygen offsets alters float pH by a median of 3.0 mpH (3.1 ± 3.7) and float‐derived surfacepCO2by −3.2 μatm (−3.2 ± 3.9). This adjustment to floatpCO2represents half, or more, of the bias in float‐derivedpCO2reported in studies comparing floatpCO2to shipboardpCO2measurements.more » « less
-
Abstract Oxygen deficient zones (ODZs) account for about 30% of total oceanic fixed nitrogen loss via processes including denitrification, a microbially mediated pathway proceeding stepwise from NO3− to N2. This process may be performed entirely by complete denitrifiers capable of all four enzymatic steps, but many organisms possess only partial denitrification pathways, either producing or consuming key intermediates such as the greenhouse gas N2O. Metagenomics and marker gene surveys have revealed a diversity of denitrification genes within ODZs, but whether these genes co-occur within complete or partial denitrifiers and the identities of denitrifying taxa remain open questions. We assemble genomes from metagenomes spanning the ETNP and Arabian Sea, and map these metagenome-assembled genomes (MAGs) to 56 metagenomes from all three major ODZs to reveal the predominance of partial denitrifiers, particularly single-step denitrifiers. We find niche differentiation among nitrogen-cycling organisms, with communities performing each nitrogen transformation distinct in taxonomic identity and motility traits. Our collection of 962 MAGs presents the largest collection of pelagic ODZ microorganisms and reveals a clearer picture of the nitrogen cycling community within this environment.more » « less
-
Abstract A striking feature of Oxygen Deficient Zones (ODZs) on the eastern boundary of the Pacific Ocean are large subsurface plumes of iodide. Throughout the oceans, iodate is the predominant and thermodynamically favored species of dissolved iodine, but iodate is depleted within these plumes. The origin of iodide plumes and mechanism of reduction of iodate to iodide remains unclear but is thought to arise from a combination of in situ reduction and inputs from reducing shelf sediments. To distinguish between these sources, we investigated iodine redox speciation along the Oregon continental shelf. This upwelling system resembles ODZs but exhibits episodic hypoxia, rather than a persistently denitrifying water column. We observed elevated iodide in the benthic boundary layer overlying shelf sediments, but to a much smaller extent than within ODZs. There was no evidence of offshore plumes of iodide or increases in total dissolved iodine. Results suggest that an anaerobic water column dominated by denitrification, such as in ODZs, is required for iodate reduction. However, re‐analysis of iodine redox data from previous ODZ work suggests that most iodate reduction occurs in sediments, not the water column, and is also decoupled from denitrification. The underlying differences between these regimes have yet to be resolved, but could indicate a role for reduced sulfur in iodate reduction if the sulfate reduction zone is closer to the sediment‐water interface in ODZ shelf sediments than in Oregon sediments. Iodate reduction is not a simple function of oxygen depletion, which has important implications for its application as a paleoredox tracer.more » « less
-
Abstract All else equal, if the ocean's “biological [carbon] pump” strengthens, the dissolved oxygen (O2) content of the ocean interior declines. Confidence is now high that the ocean interior as a whole contained less oxygen during the ice ages. This is strong evidence that the ocean's biological pump stored more carbon in the ocean interior during the ice ages, providing the core of an explanation for the lower atmospheric carbon dioxide (CO2) concentrations of the ice ages. Vollmer et al. (2022,https://doi.org/10.1029/2021PA004339) combine proxies for the oxygen and nutrient content of bottom waters to show that the ocean nutrient reservoir was more completely harnessed by the biological pump during the Last Glacial Maximum, with an increase in the proportion of dissolved nutrients in the ocean interior that were “regenerated” (transported as sinking organic matter from the ocean surface to the interior) rather than “preformed” (transported to the interior as dissolved nutrients by ocean circulation). This points to changes in the Southern Ocean, the dominant source of preformed nutrients in the modern ocean, with an apparent additional contribution from a decline in the preformed nutrient content of North Atlantic‐formed interior water. Vollmer et al. also find a lack of LGM‐to‐Holocene difference in the preformed13C/12C ratio of dissolved inorganic carbon. This finding may allow future studies to resolve which of the proposed Southern Ocean mechanisms was most responsible for enhanced ocean CO2storage during the ice ages: (a) coupled changes in ocean circulation and biological productivity, or (b) physical limitations on air‐sea gas exchange.more » « less
An official website of the United States government

