skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward direct spatial and intensity characterization of ultra-high-intensity laser pulses using ponderomotive scattering of free electrons
Spatial distributions of electrons ionized and scattered from ultra-low-pressure gases are proposed and experimentally demonstrated as a method to directly measure the intensity of an ultra-high-intensity laser pulse. Analytic models relating the peak scattered electron energy to the peak laser intensity are derived and compared to paraxial Runge–Kutta simulations highlighting two models suitable for describing electrons scattered from weakly paraxial beams (f#>5) for intensities in the range of 1018−1021 W cm−2. Scattering energies are shown to be dependent on gas species, emphasizing the need for specific gases for given intensity ranges. Direct measurements of the laser intensity at full power of two laser systems are demonstrated, both showing a good agreement between indirect methods of intensity measurement and the proposed method. One experiment exhibited the role of spatial aberrations in the scattered electron distribution, motivating a qualitative study on the effect. We propose the use of convolutional neural networks as a method for extracting quantitative information on the spatial structure of the laser at full power. We believe the presented technique to be a powerful tool that can be immediately implemented in many high-power laser facilities worldwide.  more » « less
Award ID(s):
2308905
PAR ID:
10591978
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Plasmas
Volume:
30
Issue:
8
ISSN:
1070-664X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ultra-intense laser–matter interactions are often difficult to predict from first principles because of the complexity of plasma processes and the many degrees of freedom relating to the laser and target parameters. An important approach to controlling and optimizing ultra-intense laser interactions involves gathering large datasets and using these data to train statistical and machine learning models. In this paper, we describe experimental efforts to accelerate electrons and protons to ∼MeV energies with this goal in mind. These experiments involve a 1 kHz repetition rate ultra-intense laser system with ∼10 mJ per shot, a peak intensity near 5 × 1018 W/cm2, and a “liquid leaf” target. Improvements to the data acquisition capabilities of this laser system greatly aided this investigation. Generally, we find that the trained models were very effective in controlling the numbers of MeV electrons ejected. The models were less successful at shifting the energy range of ejected electrons. Simultaneous control of the numbers of ∼MeV electrons and the energy range will be the subject of future experimentation using this platform. 
    more » « less
  2. Abstract We present a new method for computation of radiation spectra in the non-linear regime of operation of inverse Compton sources characterized by high laser intensities. The resulting simulations agree well with the experiments. Increasing the laser intensity changes the longitudinal velocity of the electrons during their collision, leading to considerable non-linear broadening in the scattered radiation spectra. The effects of such ponderomotive broadening are so deleterious that most inverse Compton sources either remain at low laser intensities or pay a steep price to operate at a small fraction of the physically possible peak spectral output. This ponderomotive broadening can be reduced by a suitable frequency modulation (also referred to as “chirping”, which is not necessarily linear) of the incident laser pulse, thereby drastically increasing the peak spectral density. This frequency modulation, included in the new code as an optional functionality, is used in simulations to motivate the experimental implementation of this transformative technique. 
    more » « less
  3. We present a technique to assess the focal volume of petawatt-class lasers at full power. Our approach exploits quantitative measurement of the angular distribution of electrons born in the focus via ionization of rarefied gas, which are accelerated forward and ejected ponderomotively by the field. We show that a bivariate (θ,φ) angular distribution, which was obtained with image plates, not only enables the peak intensity to be extracted, but also reflects nonideality of the focal-spot intensity distribution. In our prototype demonstration at intensities of a few ×1019 to a few ×1020 W/cm2, an f/10 optic produced a focal spot in the paraxial regime. This allows a planewave parametrization of the peak intensity given by tan θ_c = 2/a_0 (a_0 being the normalized vector potential and θc the minimum ejection angle) to be compared with our measurements. Qualitative agreement was found using an a0 inferred from the pulse energy, pulse duration, and focal spot distribution with a modified parametrization, tan θ_c = 2η/a_0 (η = 2.02+0.26−0.22). This highlights the need for (i) better understanding of intensity degradation due to focal-spot distortions and (ii) more robust modeling of the ejection dynamics. Using single-shot detection of electrons, we showed that while there is significant shot-to-shot variation in the number of electrons ejected at a given angular position, the average distribution scales with the pulse energy in a way that is consistent with that seen with the image plates. Finally, we note that the asymptotic behavior as θ → 0◦ limits the usability of angular measurement. For 800 nm, this limit is at an intensity ∼10^21 W/cm^2. 
    more » « less
  4. In the Raman probing of multilayer thin film materials, the intensity of the measured Raman scattered light will be impacted by the thickness of the thin film layers. The Raman signal intensity will vary non-monotonically with thickness due to interference from the multiple reflections of both the incident laser light and the Raman scattered light of thin film interfaces. Here, a method for calculating the Raman signal intensity from a multilayer thin film system based on the transfer matrix method with a rigorous treatment of the Raman signal generation (discontinuity) is presented. This calculation methodology is valid for any thin film stack with an arbitrary number of layers with arbitrary thicknesses. This approach is applied to several thin film material systems, including silicon-on-sapphire thin films, graphene on Si with a SiO2capping layer, and multilayer MoS2with the presence of a gap between layers and substrate. Different applications where this method can be used in the Raman probing of thin film material properties are discussed. 
    more » « less
  5. Sub-optical-cycle dynamics of dense electron bunches in relativistic-intensity laser–solid interactions lead to the emission of high-order harmonics and attosecond light pulses. The capacity of particle-in-cell simulations to accurately model these dynamics is essential for the prediction of emission properties because the attosecond pulse intensity depends on the electron density distribution at the time of emission and on the temporal distribution of individual electron Lorentz-factors in an emitting electron bunch. Here, we show that in one-dimensional collisionless simulations, the peak density of the emitting electron bunch increases with the increase in the spatial resolution of the simulation grid. When collisions are added to the model, the peak electron density becomes independent of the spatial resolution. Collisions are shown to increase the spread of the peaks of Lorentz-factors of emitting electrons in time, especially in the regimes far from optimum generation conditions, thus leading to lower intensities of attosecond pulses as compared to those obtained in collisionless simulations. 
    more » « less