skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Density of continuous functions in Sobolev spaces with applications to capacity
We show that capacity can be computed with locally Lipschitz functions in locally complete and separable metric spaces. Further, we show that if ( X , d , μ<#comment/> ) (X,d,\mu ) is a locally complete and separable metric measure space, then continuous functions are dense in the Newtonian space N 1 , p ( X ) N^{1,p}(X) . Here the measure μ<#comment/> \mu is Borel and is finite and positive on all metric balls. In particular, we don’t assume properness of X X , doubling of μ<#comment/> \mu or any Poincaré inequalities. These resolve, partially or fully, questions posed by a number of authors, including J. Heinonen, A. Björn and J. Björn. In contrast to much of the past work, our results apply tolocally completespaces X X and dispenses with the frequently used regularity assumptions: doubling, properness, Poincaré inequality, Loewner property or quasiconvexity.  more » « less
Award ID(s):
2154032
PAR ID:
10523581
Author(s) / Creator(s):
;
Publisher / Repository:
AMS
Date Published:
Journal Name:
Transactions of the American Mathematical Society, Series B
Volume:
11
Issue:
27
ISSN:
2330-0000
Page Range / eLocation ID:
901 to 944
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We prove and extend the longest-standing conjecture in ‘ q , t q,t -Catalan combinatorics,’ namely, the combinatorial formula for ∇<#comment/> m s μ<#comment/> \nabla ^m s_{\mu } conjectured by Loehr and Warrington, where s μ<#comment/> s_{\mu } is a Schur function and ∇<#comment/> \nabla is an eigenoperator on Macdonald polynomials. Our approach is to establish a stronger identity of infinite series of G L l GL_l characters involvingSchur Catalanimals; these were recently shown by the authors to represent Schur functions s μ<#comment/> [ −<#comment/> M X m , n ] s_{\mu }[-MX^{m,n}] in subalgebras Λ<#comment/> ( X m , n ) ⊂<#comment/> E \Lambda (X^{m,n})\subset \mathcal {E} isomorphic to the algebra of symmetric functions Λ<#comment/> \Lambda over Q ( q , t ) \mathbb {Q} (q,t) , where E \mathcal {E} is the elliptic Hall algebra of Burban and Schiffmann. We establish a combinatorial formula for Schur Catalanimals as weighted sums of LLT polynomials, with terms indexed by configurations of nested lattice paths callednests, having endpoints and bounding constraints controlled by data called aden. The special case for Λ<#comment/> ( X m , 1 ) \Lambda (X^{m,1}) proves the Loehr-Warrington conjecture, giving ∇<#comment/> m s μ<#comment/> \nabla ^m s_{\mu } as a weighted sum of LLT polynomials indexed by systems of nested Dyck paths. In general, for Λ<#comment/> ( X m , n ) \Lambda (X^{m,n}) our formula implies a new ( m , n ) (m,n) version of the Loehr-Warrington conjecture. In the case where each nest consists of a single lattice path, the nests in a den formula reduce to our previous shuffle theorem for paths under any line. Both this and the ( m , n ) (m,n) Loehr-Warrington formula generalize the ( k m , k n ) (km,kn) shuffle theorem proven by Carlsson and Mellit (for n = 1 n=1 ) and Mellit. Our formula here unifies these two generalizations. 
    more » « less
  2. In this paper, we consider higher regularity of a weak solution ( u , p ) (\mathbf {u},p) to stationary Stokes systems with variable coefficients. Under the assumptions that coefficients and data are piecewise C s , δ<#comment/> C^{s,\delta } in a bounded domain consisting of a finite number of subdomains with interfacial boundaries in C s + 1 , μ<#comment/> C^{s+1,\mu } , where s s is a positive integer, δ<#comment/> ∈<#comment/> ( 0 , 1 ) \delta \in (0,1) , and μ<#comment/> ∈<#comment/> ( 0 , 1 ] \mu \in (0,1] , we show that D u D\mathbf {u} and p p are piecewise C s , δ<#comment/> μ<#comment/> C^{s,\delta _{\mu }} , where δ<#comment/> μ<#comment/> = min { 1 2 , μ<#comment/> , δ<#comment/> } \delta _{\mu }=\min \big \{\frac {1}{2},\mu ,\delta \big \} . Our result is new even in the 2D case with piecewise constant coefficients. 
    more » « less
  3. We show that for any even log-concave probability measure μ<#comment/> \mu on R n \mathbb {R}^n , any pair of symmetric convex sets K K and L L , and any λ<#comment/> ∈<#comment/> [ 0 , 1 ] \lambda \in [0,1] , μ<#comment/> ( ( 1 −<#comment/> λ<#comment/> ) K + λ<#comment/> L ) c n ≥<#comment/> ( 1 −<#comment/> λ<#comment/> ) μ<#comment/> ( K ) c n + λ<#comment/> μ<#comment/> ( L ) c n , \begin{equation*} \mu ((1-\lambda ) K+\lambda L)^{c_n}\geq (1-\lambda ) \mu (K)^{c_n}+\lambda \mu (L)^{c_n}, \end{equation*} where c n ≥<#comment/> n −<#comment/> 4 −<#comment/> o ( 1 ) c_n\geq n^{-4-o(1)} . This constitutes progress towards the dimensional Brunn-Minkowski conjecture (see Richard J. Gardner and Artem Zvavitch [Tran. Amer. Math. Soc. 362 (2010), pp. 5333–5353]; Andrea Colesanti, Galyna V. Livshyts, Arnaud Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139]). Moreover, our bound improves for various special classes of log-concave measures. 
    more » « less
  4. In this paper we consider which families of finite simple groups G G have the property that for each ϵ<#comment/> > 0 \epsilon > 0 there exists N > 0 N > 0 such that, if | G | ≥<#comment/> N |G| \ge N and S , T S, T are normal subsets of G G with at least ϵ<#comment/> | G | \epsilon |G| elements each, then every non-trivial element of G G is the product of an element of S S and an element of T T . We show that this holds in a strong and effective sense for finite simple groups of Lie type of bounded rank, while it does not hold for alternating groups or groups of the form P S L n ( q ) \mathrm {PSL}_n(q) where q q is fixed and n →<#comment/> ∞<#comment/> n\to \infty . However, in the case S = T S=T and G G alternating this holds with an explicit bound on N N in terms of ϵ<#comment/> \epsilon . Related problems and applications are also discussed. In particular we show that, if w 1 , w 2 w_1, w_2 are non-trivial words, G G is a finite simple group of Lie type of bounded rank, and for g ∈<#comment/> G g \in G , P w 1 ( G ) , w 2 ( G ) ( g ) P_{w_1(G),w_2(G)}(g) denotes the probability that g 1 g 2 = g g_1g_2 = g where g i ∈<#comment/> w i ( G ) g_i \in w_i(G) are chosen uniformly and independently, then, as | G | →<#comment/> ∞<#comment/> |G| \to \infty , the distribution P w 1 ( G ) , w 2 ( G ) P_{w_1(G),w_2(G)} tends to the uniform distribution on G G with respect to the L ∞<#comment/> L^{\infty } norm. 
    more » « less
  5. We study regularity of solutions u u to ∂<#comment/> ¯<#comment/> u = f \overline \partial u=f on a relatively compact C 2 C^2 domain D D in a complex manifold of dimension n n , where f f is a ( 0 , q ) (0,q) form. Assume that there are either ( q + 1 ) (q+1) negative or ( n −<#comment/> q ) (n-q) positive Levi eigenvalues at each point of boundary ∂<#comment/> D \partial D . Under the necessary condition that a locally L 2 L^2 solution exists on the domain, we show the existence of the solutions on the closure of the domain that gain 1 / 2 1/2 derivative when q = 1 q=1 and f f is in the Hölder–Zygmund space Λ<#comment/> r ( D ) \Lambda ^r( D) with r > 1 r>1 . For q > 1 q>1 , the same regularity for the solutions is achieved when ∂<#comment/> D \partial D is either sufficiently smooth or of ( n −<#comment/> q ) (n-q) positive Levi eigenvalues everywhere on ∂<#comment/> D \partial D
    more » « less