skip to main content


This content will become publicly available on June 17, 2025

Title: Conjugation through Si–O–Si bonds, silsesquioxane (SQ) half cage copolymers, extended examples via SiO 0.5 /SiO 1.5 units: multiple emissive states in violation of Kasha's rule

Fluorescence emissionλmaxred-shifts with increasing DP in Vy4HC co-oligomers.

 
more » « less
Award ID(s):
2103628
PAR ID:
10523857
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Dalton Transactions
Volume:
53
Issue:
24
ISSN:
1477-9226
Page Range / eLocation ID:
10328 to 10337
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As a promising alternative to the mainstream CoFeB/MgO system with interfacial perpendicular magnetic anisotropy (PMA),L10‐FePd and its synthetic antiferromagnet (SAF) structure with large crystalline PMA can support spintronic devices with sufficient thermal stability at sub‐5 nm sizes. However, the compatibility requirement of preparingL10‐FePd thin films on Si/SiO2wafers is still unmet. In this paper, high‐qualityL10‐FePd and its SAF on Si/SiO2wafers are prepared by coating the amorphous SiO2surface with an MgO(001) seed layer. The preparedL10‐FePd single layer and SAF stack are highly (001)‐textured, showing strong PMA, low damping, and sizeable interlayer exchange coupling, respectively. Systematic characterizations, including advanced X‐ray diffraction measurement and atomic resolution‐scanning transmission electron microscopy, are conducted to explain the outstanding performance ofL10‐FePd layers. A fully‐epitaxial growth that starts from MgO seed layer, induces the (001) texture ofL10‐FePd, and extends through the SAF spacer is observed. This study makes the vision of scalable spintronics more practical.

     
    more » « less
  2. Electrical resistivity measurements were performed on single crystals of URu2–xOsxSi2up tox= 0.28 under hydrostatic pressure up toP= 2 GPa. As the Os concentration,x, is increased, 1) the lattice expands, creating an effective negative chemical pressurePch(x); 2) the hidden-order (HO) phase is enhanced and the system is driven toward a large-moment antiferromagnetic (LMAFM) phase; and 3) less external pressurePcis required to induce the HO→LMAFM phase transition. We compare the behavior of theT(x,P) phase boundary reported here for the URu2-xOsxSi2system with previous reports of enhanced HO in URu2Si2upon tuning withPor similarly in URu2–xFexSi2upon tuning with positivePch(x). It is noteworthy that pressure, Fe substitution, and Os substitution are the only known perturbations that enhance the HO phase and induce the first-order transition to the LMAFM phase in URu2Si2. We present a scenario in which the application of pressure or the isoelectronic substitution of Fe and Os ions for Ru results in an increase in the hybridization of the U-5f-electron and transition metald-electron states which leads to electronic instability in the paramagnetic phase and the concurrent formation of HO (and LMAFM) in URu2Si2. Calculations in the tight-binding approximation are included to determine the strength of hybridization between the U-5f-electron states and thed-electron states of Ru and its isoelectronic Fe and Os substituents in URu2Si2.

     
    more » « less
  3. Three new compounds in theAE‐Si‐P (AE= Sr, Eu, Ba) systems are reported. Sr2SiP4and Eu2SiP4, the first members of their respective ternary systems, are isostructural to previously reported Ba2SiP4and crystallize in the noncentrosymmetricI42d(no. 122) space group. Ba4Si3P8crystallizes in the new structure type, inP21/c(no. 14) space group,mP‐120 Pearson symbol, Wyckoff sequencee30. In the crystal structures of Sr2SiP4and Eu2SiP4all SiP4tetrahedral building blocks are connected via formation of P–P bonds forming a three‐dimensional framework. In the crystal structure of Ba4Si3P8, Si‐P tetrahedral chains formed by corner‐sharing, edge‐sharing, and P–P bonds are surrounded by Ba cations. This results in a quasi‐one‐dimensional structure. Electronic structure calculations and UV/Vis measurements suggest that theAE2SiP4(AE= Sr, Eu, Ba) are direct bandgap semiconductors with bandgaps of ca. 1.4 eV and have potential for thermoelectric applications.

     
    more » « less
  4.  
    more » « less
  5. Operandocharacterization reveals the structural dynamics of PtSn/SiO2catalysts, hinting at a Pt-rich surface configuration for optimal propane dehydrogenation performance.

     
    more » « less