skip to main content


Title: Fast and slow microphysics regimes in a minimalist model of cloudy Rayleigh-Bénard convection
A minimalist model of microphysical properties in cloudy Rayleigh-Bénard convection is developed based on mass and number balances for cloud droplets growing by vapor condensation. The model is relevant to a turbulent mixed-layer in which a steady forcing of supersaturation can be defined, e.g., a model of the cloudy boundary layer or a convection-cloud chamber. The model assumes steady injection of aerosol particles that are activated to form cloud droplets, and the removal of cloud droplets through sedimentation. Simplifying assumptions include the consideration of mean properties in steady state, neglect of coalescence growth, and no detailed representation of the droplet size distribution. Closed-form expressions for cloud droplet radius, number concentration, and liquid water content are derived. Limits of fast and slow microphysics, compared to the turbulent mixing time scale, are explored, and resulting expressions for the scaling of microphysical properties in fast and slow regimes are obtained. Scaling of microphysics with layer thickness is also explored, suggesting that liquid water content and cloud droplet number concentration increase, and mean droplet radius decreases with increasing layer thickness. Finally, the analytical model is shown to compare favorably to solutions of the fully-coupled set of governing ordinary differential equations that describe the system, and the predicted power law for liquid water mixing ratio versus droplet activation rate is observed to be consistent with measurements from the Pi convection-cloud chamber.  more » « less
Award ID(s):
2133229
PAR ID:
10523961
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Research
Volume:
5
Issue:
4
ISSN:
2643-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Water vapor supersaturation in clouds is a random variable that drives activation and growth of cloud droplets. The Pi Convection–Cloud Chamber generates a turbulent cloud with a microphysical steady state that can be varied from clean to polluted by adjusting the aerosol injection rate. The supersaturation distribution and its moments, e.g., mean and variance, are investigated for varying cloud microphysical conditions. High-speed and collocated Eulerian measurements of temperature and water vapor concentration are combined to obtain the temporally resolved supersaturation distribution. This allows quantification of the contributions of variances and covariances between water vapor and temperature. Results are consistent with expectations for a convection chamber, with strong correlation between water vapor and temperature; departures from ideal behavior can be explained as resulting from dry regions on the warm boundary, analogous to entrainment. The saturation ratio distribution is measured under conditions that show monotonic increase of liquid water content and decrease of mean droplet diameter with increasing aerosol injection rate. The change in liquid water content is proportional to the change in water vapor concentration between no-cloud and cloudy conditions. Variability in the supersaturation remains even after cloud droplets are formed, and no significant buffering is observed. Results are interpreted in terms of a cloud microphysical Damköhler number (Da), under conditions corresponding to, i.e., the slow-microphysics regime. This implies that clouds with very clean regions, such thatis satisfied, will experience supersaturation fluctuations without them being buffered by cloud droplet growth.

    Significance Statement

    The saturation ratio (humidity) in clouds controls the growth rate and formation of cloud droplets. When air in a turbulent cloud mixes, the humidity varies in space and time throughout the cloud. This is important because it means cloud droplets experience different growth histories, thereby resulting in broader size distributions. It is often assumed that growth and evaporation of cloud droplets buffers out some of the humidity variations. Measuring these variations has been difficult, especially in the field. The purpose of this study is to measure the saturation ratio distribution in clouds with a range of conditions. We measure the in-cloud saturation ratio using a convection cloud chamber with clean to polluted cloud properties. We found in clouds with low concentrations of droplets that the variations in the saturation ratio are not suppressed.

     
    more » « less
  2. Abstract

    The convection–cloud chamber enables measurement of aerosol and cloud microphysics, as well as their interactions, within a turbulent environment under steady‐state conditions. Increasing the size of a convection–cloud chamber, while holding the imposed temperature difference constant, leads to increased Rayleigh, Reynolds and Nusselt numbers. Large–eddy simulation coupled with a bin microphysics model allows the influence of increased velocity, time, and spatial scales on cloud microphysical properties to be explored. Simulations of a convection–cloud chamber, with fixed aspect ratio and increasing heights ofH = 1, 2, 4, and (for dry conditions only) 8 m are performed. The key findings are: Velocity fluctuations scale asH1/3, consistent with the Deardorff expression for convective velocity, and implying that the turbulence correlation time scales asH2/3. Temperature and other scalar fluctuations scale asH−3/7. Droplet size distributions from chambers of different sizes can be matched by adjusting the total aerosol injection rate as the horizontal cross‐sectional area (i.e., asH2for constant aspect ratio). Injection of aerosols at a point versus distributed throughout the volume makes no difference for polluted conditions, but can lead to cloud droplet size distribution broadening in clean conditions. Cloud droplet growth by collision and coalescence leads to a broader right tail of the distribution compared to condensation growth alone, and this tail increases in magnitude and extent monotonically as the increase of chamber height. These results also have implications for scaling within turbulent, cloudy mixed‐layers in the atmosphere, such as fog layers.

     
    more » « less
  3. Abstract

    Bin microphysics schemes are useful tools for cloud simulations and are often considered to provide a benchmark for model intercomparison. However, they may experience issues with numerical diffusion, which are not well quantified, and the transport of hydrometeors depends on the choice of advection scheme, which can also change cloud simulation results. Here, an atmospheric large‐eddy simulation model is adapted to simulate a statistically steady‐state cloud in a convection cloud chamber under well‐constrained conditions. Two bin microphysics schemes, a spectral bin method and the method of moments, as well as several advection methods for the transport of the microphysical variables are employed for model intercomparison. Results show that different combinations of microphysics and advection schemes can lead to considerable differences in simulated cloud properties, such as cloud droplet number concentration. We find that simulations using the advection scheme that suffers more from numerical diffusion tends to have a smaller droplet number concentration and liquid water content, while simulation with the microphysics scheme that suffers more from numerical diffusion tends to have a broader size distribution and thus larger mean droplet sizes. Sensitivities of simulations to bin resolution, spatial resolution, and temporal resolution are also tested. We find that refining the microphysical bin resolution leads to a broader cloud droplet size distribution due to the advection of hydrometeors. Our results provide insight for using different advection and microphysics schemes in cloud chamber simulations, which might also help understand the uncertainties of the schemes used in atmospheric cloud simulations.

     
    more » « less
  4. Abstract

    The Pi Cloud Chamber offers a unique opportunity to study aerosol‐cloud microphysics interactions in a steady‐state, turbulent environment. In this work, an atmospheric large‐eddy simulation (LES) model with spectral bin microphysics is scaled down to simulate these interactions, allowing comparison with experimental results. A simple scalar flux budget model is developed and used to explore the effect of sidewalls on the bulk mixing temperature, water vapor mixing ratio, and supersaturation. The scaled simulation and the simple scalar flux budget model produce comparable bulk mixing scalar values. The LES dynamics results are compared with particle image velocimetry measurements of turbulent kinetic energy, energy dissipation rates, and large‐scale oscillation frequencies from the cloud chamber. These simulated results match quantitatively to experimental results. Finally, with the bin microphysics included the LES is able to simulate steady‐state cloud conditions and broadening of the cloud droplet size distributions with decreasing droplet number concentration, as observed in the experiments. The results further suggest that collision‐coalescence does not contribute significantly to this broadening. This opens a path for further detailed intercomparison of laboratory and simulation results for model validation and exploration of specific physical processes.

     
    more » « less
  5. Abstract

    Turbulent fluctuations of scalar and velocity fields are critical for cloud microphysical processes, e.g., droplet activation and size distribution evolution, and can therefore influence cloud radiative forcing and precipitation formation. Lagrangian and Eulerian water vapor, temperature, and supersaturation statistics are investigated in direct numerical simulations (DNS) of turbulent Rayleigh–Bénard convection in the Pi Convection Cloud Chamber to provide a foundation for parameterizing subgrid-scale fluctuations in atmospheric models. A subgrid model for water vapor and temperature variances and covariance and supersaturation variance is proposed, valid for both clear and cloudy conditions. Evaluation of phase change contributions through an a priori test using DNS data shows good performance of the model. Supersaturation is a nonlinear function of temperature and water vapor, and relative external fluxes of water vapor and heat (e.g., during entrainment-mixing and phase change) influence turbulent supersaturation fluctuations. Although supersaturation has autocorrelation and structure functions similar to the independent scalars (temperature and water vapor), the autocorrelation time scale of supersaturation differs. Relative scalar fluxes in DNS without cloud make supersaturation PDFs less skewed than the adiabatic case, where they are highly negatively skewed. However, droplet condensation changes the PDF shape response: it becomes positively skewed for the adiabatic case and negatively skewed when the sidewall relative fluxes are large. Condensation also increases correlations between water vapor and temperature in the presence of relative scalar fluxes but decreases correlations for the adiabatic case. These changes in correlation suppress supersaturation variability for the nonadiabatic cases and increase it for the adiabatic case. Implications of this work for subgrid microphysics modeling using a Lagrangian stochastic scheme are also discussed.

     
    more » « less