skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vector Quantization Methods for Access Point Placement in Cell-Free Massive MIMO Systems
We examine the problem of uplink cell-free access point (AP) placement in the context of optimal throughput. In this regard, we formulate two main placement problems, namely the sum rate and minimum rate maximization problems, and discuss the challenges associated with solving the underlying optimization problems with the help of some simple scenarios. As a practical solution to the AP placement problem, we suggest a vector quantization (VQ) approach. The suitability of the VQ approach to cell-free AP placement is investigated by examining three VQ-based solutions. First, the standard VQ approach, that is the Lloyd algorithm (using the squared error distortion function) is described. Second, the tree-structured VQ (TSVQ), which performs successive partitioning of the distribution space is applied. Third, a probability density function optimized VQ (PDFVQ) procedure is outlined, enabling efficient, low complexity, and scalable placement, and is aimed at a massive distributed multiple-input-multiple-output scenario. While the VQ-based solutions do not explicitly solve the cell-free AP placement problems, numerical experiments show that their sum and minimum rate performances are good enough, and offer a good starting point for gradient-based optimization methods. Among the VQ solutions, PDFVQ, with its distinct advantages, offers a good trade-off between sum and minimum rates.  more » « less
Award ID(s):
2124929 2225617
PAR ID:
10524104
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Wireless Communications
Volume:
23
Issue:
6
ISSN:
1536-1276
Page Range / eLocation ID:
5425 to 5440
Subject(s) / Keyword(s):
Throughput, Interference, Wireless communication, Optimization, Signal to noise ratio, Massive MIMO, Standards
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate the multi-faceted access point (AP) placement problems in uplink small-cell and cell-free networks in the context of throughput-optimality and to what extent the popular Lloyd algorithm from vector quantization (VQ) is suited to solve them. We develop single user throughput optimization formulations and solutions related to VQ considering the small cell scenario, after which we expand the formulations to multiple users. For the cell-free scenario, we consider the mean throughput of all users and a max-min technique. We compare the rate performances of the AP placement solutions from both scenarios with the Lloyd algorithm. While the Lloyd algorithm is found not to strictly solve for small cell AP locations and its approach is divergent from the cell-free perspective, we conclude from numerical experiments that it is good enough for both scenarios. 
    more » « less
  2. In this paper, we explore the small-cell uplink access point (AP) placement problem in the context of throughput optimality and provide solutions while taking into consideration inter-cell interference (ICI). First, we briefly review the vector quantization (VQ) approach and related single user throughput optimal formulations for AP placement. Then, we investigate the small-cell case with multiple users and expose the limitations of mean squared error based VQ for solving this problem. While the Lloyd algorithm from the VQ approach is found not to strictly solve the small-cell case, based on the tractability and quality of the resulting AP placement, we deem it suitable as a simple and appropriate framework to solve more complicated problems. Accordingly, to minimize ICI and consequently enhance achievable throughput, we design two Lloyd-type algorithms, namely the Interference Lloyd algorithm and the Inter-AP Lloyd algorithm, both of which incorporate ICI in their distortion functions. Simulation results show that both of the proposed algorithms provide superior 95%-likely rate over the traditional Lloyd algorithm and the Inter-AP Lloyd algorithm yields a significant increase of up to 36.34% in achievable rate over the Lloyd algorithm. 
    more » « less
  3. This article studies a problem of strategic network inspection, in which a defender (agency) is tasked with detecting the presence of multiple attacks in the network. An inspection strategy entails monitoring the network components, possibly in a randomized manner, using a given number of detectors. We formulate the network inspection problem [Formula: see text] as a large-scale bilevel optimization problem, in which the defender seeks to determine an inspection strategy with minimum number of detectors that ensures a target expected detection rate under worst-case attacks. We show that optimal solutions of [Formula: see text] can be obtained from the equilibria of a large-scale zero-sum game. Our equilibrium analysis involves both game-theoretic and combinatorial arguments and leads to a computationally tractable approach to solve [Formula: see text]. First, we construct an approximate solution by using solutions of minimum set cover (MSC) and maximum set packing (MSP) problems and evaluate its detection performance. In fact, this construction generalizes some of the known results in network security games. Second, we leverage properties of the optimal detection rate to iteratively refine our MSC/MSP-based solution through a column generation procedure. Computational results on benchmark water networks demonstrate the scalability, performance, and operational feasibility of our approach. The results indicate that utilities can achieve a high level of protection in large-scale networks by strategically positioning a small number of detectors. 
    more » « less
  4. There has been a long-standing interest in computing diverse solutions to optimization problems. In 1995 J. Krarup [28] posed the problem of finding k-edge disjoint Hamiltonian Circuits of minimum total weight, called the peripatetic salesman problem (PSP). Since then researchers have investigated the complexity of finding diverse solutions to spanning trees, paths, vertex covers, matchings, and more. Unlike the PSP that has a constraint on the total weight of the solutions, recent work has involved finding diverse solutions that are all optimal. However, sometimes the space of exact solutions may be too small to achieve sufficient diversity. Motivated by this, we initiate the study of obtaining sufficiently-diverse, yet approximately-optimal solutions to optimization problems. Formally, given an integer k, an approximation factor c, and an instance I of an optimization problem, we aim to obtain a set of k solutions to I that a) are all c approximately-optimal for I and b) maximize the diversity of the k solutions. Finding such solutions, therefore, requires a better understanding of the global landscape of the optimization function. Given a metric on the space of solutions, and the diversity measure as the sum of pairwise distances between solutions, we first provide a general reduction to an associated budget-constrained optimization (BCO) problem, where one objective function is to optimized subject to a bound on the second objective function. We then prove that bi-approximations to the BCO can be used to give bi-approximations to the diverse approximately optimal solutions problem. As applications of our result, we present polynomial time approximation algorithms for several problems such as diverse c-approximate maximum matchings, shortest paths, global min-cut, and minimum weight bases of a matroid. The last result gives us diverse c-approximate minimum spanning trees, advancing a step towards achieving diverse c-approximate TSP tours. We also explore the connection to the field of multiobjective optimization and show that the class of problems to which our result applies includes those for which the associated DUALRESTRICT problem defined by Papadimitriou and Yannakakis [35], and recently explored by Herzel et al. [26] can be solved in polynomial ti 
    more » « less
  5. There has been a long-standing interest in computing diverse solutions to optimization problems. In 1995 J. Krarup [28] posed the problem of finding k-edge disjoint Hamiltonian Circuits of minimum total weight, called the peripatetic salesman problem (PSP). Since then researchers have investigated the complexity of finding diverse solutions to spanning trees, paths, vertex covers, matchings, and more. Unlike the PSP that has a constraint on the total weight of the solutions, recent work has involved finding diverse solutions that are all optimal. However, sometimes the space of exact solutions may be too small to achieve sufficient diversity. Motivated by this, we initiate the study of obtaining sufficiently-diverse, yet approximately-optimal solutions to optimization problems. Formally, given an integer k, an approximation factor c, and an instance I of an optimization problem, we aim to obtain a set of k solutions to I that a) are all c approximately-optimal for I and b) maximize the diversity of the k solutions. Finding such solutions, therefore, requires a better understanding of the global landscape of the optimization function. Given a metric on the space of solutions, and the diversity measure as the sum of pairwise distances between solutions, we first provide a general reduction to an associated budget-constrained optimization (BCO) problem, where one objective function is to optimized subject to a bound on the second objective function. We then prove that bi-approximations to the BCO can be used to give bi-approximations to the diverse approximately optimal solutions problem. As applications of our result, we present polynomial time approximation algorithms for several problems such as diverse c-approximate maximum matchings, shortest paths, global min-cut, and minimum weight bases of a matroid. The last result gives us diversec-approximate minimum spanning trees, advancing a step towards achieving diverse c-approximate TSP tours. We also explore the connection to the field of multiobjective optimization and show that the class of problems to which our result applies includes those for which the associated DUALRESTRICT problem defined by Papadimitriou and Yannakakis [35], and recently explored by Herzel et al. [26] can be solved in polynomial time. 
    more » « less