skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Damage Curves Derived from Hurricane Ike in the West of Galveston Bay Based on Insurance Claims and Hydrodynamic Simulations
Abstract Hurricane Ike, which struck the United States in September 2008, was the ninth most expensive hurricane in terms of damages. It caused nearly USD 30 billion in damage after making landfall on the Bolivar Peninsula, Texas. We used the Delft3d-FM/SWAN hydrodynamic and spectral wave model to simulate the storm surge inundation around Galveston Bay during Hurricane Ike. Damage curves were established through the relationship between eight hydrodynamic parameters (water depth, flow velocity, unit discharge, flow momentum flux, significant wave height, wave energy flux, total water depth (flow depth plus wave height), and total (flow plus wave) force) simulated by the model and National Flood Insurance Program (NFIP) insurance damage data. The NFIP insurance database contains a large amount of building damage data, building stories, and elevation, as well as other information from the Ike event. We found that the damage curves are sensitive to the model grid resolution, building elevation, and the number of stories. We also found that the resulting damage functions are steeper than those developed for residential structures in many other locations.  more » « less
Award ID(s):
2228486 2228485
PAR ID:
10524175
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
International Journal of Disaster Risk Science
Volume:
14
Issue:
6
ISSN:
2095-0055
Page Range / eLocation ID:
932 to 946
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In the aftermath of Hurricane Ike in 2008 in the United States, the “Ike Dike” was proposed as a coastal barrier system, featuring floodgates, to protect the Houston‐Galveston area (HGA) from future storm surges. Given its substantial costs, the feasibility and effectiveness of the Ike Dike have been subjects of investigation. In this study, we evaluated these aspects under both present and future climate conditions by simulating storm surges using a set of models. Delft3D Flexible Mesh Suite was utilized to simulate hydrodynamic and wave motions driven by hurricanes, with wind and pressure fields spatialized by the Holland model. The models were validated against data from Hurricane Ike and were used to simulate synthetic hurricane tracks downscaled from several general circulation models and based on different sea level rise projections, both with and without the Ike Dike. Flood maps for each simulation were generated, and probabilistic flood depths for specific annual exceedance probabilities were predicted using annual maxima flood maps. Building damage curves were applied to residential properties in the HGA to calculate flood damage for each exceedance probability, resulting in estimates of expected annual damage as a measure of quantified flood risk. Our findings indicate that the Ike Dike significantly mitigates storm surge risk in the HGA, demonstrating its feasibility and effectiveness. We also found that the flood risk estimates are sensitive to hurricane intensity, the choice of damage curve, and the properties included in the analysis, suggesting that careful consideration is needed in future studies. 
    more » « less
  2. null (Ed.)
    Wave forcing from hurricanes, nor’easters, and energetic storms can cause erosion of the berm and beach face resulting in increased vulnerability of dunes and coastal infrastructure. LIDAR or other surveying techniques have quantified post-event morphology, but there is a lack of in situ hydrodynamic and morphodynamic measurements during extreme storm events. Two field studies were conducted in March 2018 and April 2019 at Bethany Beach, Delaware, where in situ hydrodynamic and morphodynamic measurements were made during a nor’easter (Nor’easter Riley) and an energetic storm (Easter Eve Storm). An array of sensors to measure water velocity, water depth, water elevation and bed elevation were mounted to scaffold pipes and deployed in a single cross-shore transect. Water velocity was measured using an electro-magnetic current meter while water and bed elevations were measured using an acoustic distance meter along with an algorithm to differentiate between the water and bed during swash processes. GPS profiles of the beach face were measured during every day-time low tide throughout the storm events. Both accretion and erosion were measured at different cross-shore positions and at different times during the storm events. Morphodynamic change along the back-beach was found to be related to berm erosion, suggesting an important morphologic feedback mechanism. Accumulated wave energy and wave energy flux per unit area between Nor’easter Riley and a recent mid-Atlantic hurricane (Hurricane Dorian) were calculated and compared. Coastal Observations: JALBTCX/NCMP emergency-response airborne Lidar coastal mapping & quick response data products for 2016/2017/2018 hurricane impact assessments 
    more » « less
  3. An on-grade and an elevated specimen were tested and exposed to regular waves, in the Directional Wave Basin (DWB) at Oregon State University, with varying water depths and wave heights to simulate typical wave/surge conditions resulting from landfall hurricanes on low-lying barrier islands such as Hurricane Sandy that impacted the US East Coast in 2012 and Hurricane Ike that impacted the US Gulf Coast in 2008. Several instruments were used in the experiment, including nine wire resistance wave gauges located offshore, eight ultrasonic wave gauges located onshore near the specimens, four acoustic-doppler velocimeters, twelve pressure sensors, four load cells, and four triaxial accelerometers located on the specimens. The data (water depth, wave height, velocity, pressure, force, acceleration) gathered can help engineers and numerical modelers better understand the wave-structure interaction and help in improving design criteria of coastal light wood frame residential structures subjected to hurricane overland surge and wave loading. 
    more » « less
  4. A Computational Fluid Dynamic (CFD) model study of wave and structure interactions on an elevated residential building under various air gap and surge/wave conditions was performed using the olaFlow, an open-source program using the OpenFOAM (Open-source Fields Operation And Manipulation) platform. The numerical model results, including free surface elevation, wave velocity, and vertical pressures on the underside of the elevated structure, showed a good agreement with the measured time-series data from the 1:6 scale hydraulic experiment (Duncan et al., 2021). The numerical simulations were used to extend the physical model tests by computing the vertical distribution of the pressure and resulting wave-induced horizontal forces/pressures, which were not measured in the physical model studies. The simulated results indicate that the pattern of pressure distributions at the frontal face of the elevated structure was controlled by water depth and wavebreaking types (nonbreaking, breaking, and broken waves). The wave induced-vertical force on the elevated structure strongly depends on wave height and the air gap, which is a net elevation from the still water level to the bottom of the structure, but the horizontal force shows complicated patterns due to the varied surge levels (flow depth), wave heights and air gaps. The new dimensionless parameter, α′/h, comprised of the air gap, incident wave height, and flow depth, is introduced and utilized to predict the horizontal forces on the elevated structure. 
    more » « less
  5. Abstract The damage potential of a hurricane is widely considered to depend more strongly on an integrated measure of the hurricane wind field, such as integrated kinetic energy (IKE), than a point‐based wind measure, such as maximum sustained wind speed (Vmax). Recent work has demonstrated that minimum sea level pressure (MSLP) is also an integrated measure of the wind field. This study investigates how well historical continental US hurricane damage is predicted by MSLP compared to bothVmaxand IKE for continental United States hurricane landfalls for the period 1988–2021. We first show for the entire North Atlantic basin that MSLP is much better correlated with IKE (rrank = 0.50) thanVmax(rrank = 0.26). We then show that continental US hurricane normalized damage is better predicted by MSLP (rrank = 0.83) than eitherVmax(rrank = 0.67) or IKE (rrank = 0.65). For Georgia to Maine hurricane landfalls specifically, MSLP and IKE show similar levels of skill at predicting damage, whereasVmaxprovides effectively no predictive power. Conclusions for IKE extend to power dissipation as well, as the two quantities are highly correlated because wind radii closely follow a Modified Rankine vortex. The physical relationship of MSLP to IKE and power dissipation is discussed. In addition to better representing damage, MSLP is also much easier to measure via aircraft or surface observations than eitherVmaxor IKE, and it is already routinely estimated operationally. We conclude that MSLP is an ideal metric for characterizing hurricane damage risk. 
    more » « less