skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effectiveness of the Ike Dike in mitigating coastal flood risk under multiple climate and sea level rise projections
Abstract In the aftermath of Hurricane Ike in 2008 in the United States, the “Ike Dike” was proposed as a coastal barrier system, featuring floodgates, to protect the Houston‐Galveston area (HGA) from future storm surges. Given its substantial costs, the feasibility and effectiveness of the Ike Dike have been subjects of investigation. In this study, we evaluated these aspects under both present and future climate conditions by simulating storm surges using a set of models. Delft3D Flexible Mesh Suite was utilized to simulate hydrodynamic and wave motions driven by hurricanes, with wind and pressure fields spatialized by the Holland model. The models were validated against data from Hurricane Ike and were used to simulate synthetic hurricane tracks downscaled from several general circulation models and based on different sea level rise projections, both with and without the Ike Dike. Flood maps for each simulation were generated, and probabilistic flood depths for specific annual exceedance probabilities were predicted using annual maxima flood maps. Building damage curves were applied to residential properties in the HGA to calculate flood damage for each exceedance probability, resulting in estimates of expected annual damage as a measure of quantified flood risk. Our findings indicate that the Ike Dike significantly mitigates storm surge risk in the HGA, demonstrating its feasibility and effectiveness. We also found that the flood risk estimates are sensitive to hurricane intensity, the choice of damage curve, and the properties included in the analysis, suggesting that careful consideration is needed in future studies.  more » « less
Award ID(s):
2228486 2228485
PAR ID:
10606256
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Risk Analysis
Volume:
45
Issue:
9
ISSN:
0272-4332
Format(s):
Medium: X Size: p. 2865-2894
Size(s):
p. 2865-2894
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hurricane Ike, which struck the United States in September 2008, was the ninth most expensive hurricane in terms of damages. It caused nearly USD 30 billion in damage after making landfall on the Bolivar Peninsula, Texas. We used the Delft3d-FM/SWAN hydrodynamic and spectral wave model to simulate the storm surge inundation around Galveston Bay during Hurricane Ike. Damage curves were established through the relationship between eight hydrodynamic parameters (water depth, flow velocity, unit discharge, flow momentum flux, significant wave height, wave energy flux, total water depth (flow depth plus wave height), and total (flow plus wave) force) simulated by the model and National Flood Insurance Program (NFIP) insurance damage data. The NFIP insurance database contains a large amount of building damage data, building stories, and elevation, as well as other information from the Ike event. We found that the damage curves are sensitive to the model grid resolution, building elevation, and the number of stories. We also found that the resulting damage functions are steeper than those developed for residential structures in many other locations. 
    more » « less
  2. There is increasing evidence that climate change will lead to greater and more frequent extreme weather events, thus underscoring the importance of effectively communicating risks of record storm surges in coastal communities. This article reviews why risk communication often fails to convey the nature and risk of storm surge among the public and highlights the limitations of conventional (two-dimensional) storm surge flood maps. The research explores the potential of dynamic street-level, augmented scenes to increase the tangibility of these risks and foster a greater sense of agency among the public. The study focused on Sunset Park, a coastal community in southwest Brooklyn that is vulnerable to storm surges and flooding. Two different representations of flooding corresponding to a category three hurricane scenario were prepared: (1) a conventional two-dimensional flood map (“2D” control group) and (2) a, dynamic, street view simulation (“3D”test group). The street view simulations were found to be (1) more effective in conveying the magnitude of flooding and evacuation challenges, (2) easier to use for judging flood water depth (even without a flood depth legend), (3) capable of generating stronger emotional responses, and (4) perceived as more authoritative in nature 
    more » « less
  3. This article deals with household-level flood risk mitigation. We present an agent-based modeling framework to simulate the mechanism of natural hazard and human interactions, to allow evaluation of community flood risk, and to predict various adaptation outcomes. The framework considers each household as an autonomous, yet socially connected, agent. A Beta-Bernoulli Bayesian learning model is first applied to measure changes of agents' risk perceptions in response to stochastic storm surges. Then the risk appraisal behaviors of agents, as a function of willingness-to-pay for flood insurance, are measured. Using Miami-Dade County, Florida as a case study, we simulated four scenarios to evaluate the outcomes of alternative adaptation strategies. Results show that community damage decreases significantly after a few years when agents become cognizant of flood risks. Compared to insurance policies with pre-Flood Insurance Rate Maps subsidies, risk-based insurance policies are more effective in promoting community resilience, but it will decrease motivations to purchase flood insurance, especially for households outside of high-risk areas. We evaluated vital model parameters using a local sensitivity analysis. Simulation results demonstrate the importance of an integrated adaptation strategy in community flood risk management. 
    more » « less
  4. null (Ed.)
    Flooding during extreme weather events damages critical infrastructure, property, and threatens lives. Hurricane María devastated Puerto Rico (PR) on 20 September 2017. Sixty-four deaths were directly attributable to the flooding. This paper describes the development of a hydrologic model using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA), capable of simulating flood depth and extent for the Añasco coastal flood plain in Western PR. The purpose of the study was to develop a numerical model to simulate flooding from extreme weather events and to evaluate the impacts on critical infrastructure and communities; Hurricane María is used as a case study. GSSHA was calibrated for Irma, a Category 3 hurricane, which struck the northeastern corner of the island on 7 September 2017, two weeks before Hurricane María. The upper Añasco watershed was calibrated using United States Geological Survey (USGS) stream discharge data. The model was validated using a storm of similar magnitude on 11–13 December 2007. Owing to the damage sustained by PR’s WSR-88D weather radar during Hurricane María, rainfall was estimated in this study using the Weather Research Forecast (WRF) model. Flooding in the coastal floodplain during Hurricane María was simulated using three methods: (1) Use of observed discharge hydrograph from the upper watershed as an inflow boundary condition for the coastal floodplain area, along with the WRF rainfall in the coastal flood plain; (2) Use of WRF rainfall to simulate runoff in the upper watershed and coastal flood plain; and (3) Similar to approach (2), except the use of bias-corrected WRF rainfall. Flooding results were compared with forty-two values of flood depth obtained during face-to-face interviews with residents of the affected communities. Impacts on critical infrastructure (water, electric, and public schools) were evaluated, assuming any structure exposed to 20 cm or more of flooding would sustain damage. Calibration equations were also used to improve flood depth estimates. Our model included the influence of storm surge, which we found to have a minimal effect on flood depths within the study area. Water infrastructure was more severely impacted by flooding than electrical infrastructure. From these findings, we conclude that the model developed in this study can be used with sufficient accuracy to identify infrastructure affected by future flooding events. 
    more » « less
  5. Floods are often associated with hurricanes making landfall. When tropical cyclones/hurricanes make landfall, they are usually accompanied by heavy rainfall and storm surges that inundate coastal areas. The worst natural disaster in the United States, in terms of loss of life and property damage, was caused by hurricane storm surges and their associated coastal flooding. To monitor coastal flooding in the areas affected by hurricanes, we used data from sensors aboard the operational Polar-orbiting and Geostationary Operational Environmental Satellites. This study aims to apply a downscaling model to recent severe coastal flooding events caused by hurricanes. To demonstrate how high-resolution 3D flood mapping can be made from moderate-resolution operational satellite observations, the downscaling model was applied to the catastrophic coastal flooding in Florida due to Hurricane Ian and in New Orleans due to Hurricanes Ida and Laura. The floodwater fraction data derived from the SNPP/NOAA-20 VIIRS (Visible Infrared Imaging Radiometer Suite) observations at the original 375 m resolution were input into the downscaling model to obtain 3D flooding information at 30 m resolution, including flooding extent, water surface level and water depth. Compared to a 2D flood extent map at the VIIRS’ original 375 m resolution, the downscaled 30 m floodwater depth maps, even when shown as 2D images, can provide more details about floodwater distribution, while 3D visualizations can demonstrate floodwater depth more clearly in relative to the terrain and provide a more direct perception of the inundation situations caused by hurricanes. The use of 3D visualization can help users clearly see floodwaters occurring over various types of terrain conditions, thus identifying a hazardous flood from non-hazardous flood types. Furthermore, 3D maps displaying floodwater depth may provide additional information for rescue efforts and damage assessments. The downscaling model can help enhance the capabilities of moderate-to-coarse resolution sensors, such as those used in operational weather satellites, flood detection and monitoring. 
    more » « less