Electrochemical (EC) and photoelectrochemical (PEC) water treatment systems are gaining popularity, necessitating new electrode materials that offer reliable performance across diverse application platforms. For applications specifically targeting dilute chemical pollutants ( i.e. , parts-per-million concentrations or less), beneficial electrode properties include high surface area to overcome kinetic overpotential losses, low electrode areal electrical resistance, and high water permeability with sufficient mechanical strength for use in electroactive membrane-based treatment systems. Here, we used electrospinning to fabricate (photo)electrodes from carbon nanofibers (CNFs) containing titanium dioxide (TiO 2 ) nanoparticles. Optimal CNF/TiO 2 composites were electrochemically and photochemically active with a surface area of ∼50 m 2 g −1 and electrode areal resistance of 2.66 Ω cm 2 , values comparable to commercial carbon-based electrode materials ( e.g. , Kynol Activated Carbon Cloth). Transformation experiments with carbamazepine (CBZ), a recalcitrant organic contaminant, suggest CNF/TiO 2 electrodes function dually as sorbents, first binding CBZ prior to oxidation at positive applied potentials. Complete CBZ transformation was observed in both EC (dark) and PEC (UV light; 280 mW cm −2 ) systems over 90 minutes, with PEC systems exhibiting 1.5-fold higher transformation rates ( k obs ∼ 0.18 min −1 ) at +1.00 V ( vs. Ag/AgCl). Composite electrodes also exhibited stability across repeated use, yielding consistent current densities over five experimental cycles (120 min each) of CBZ transformation (0.25 ± 0.03 mA cm −2 ). Because of their high surface area, electrical conductivity, photoactivity, and electrochemical stability, these electrospun CNF/TiO 2 composites represent promising (photo)electrode alternatives for diverse EC and PEC applications.
more »
« less
Potential of Photoelectric Stimulation with Ultrasmall Carbon Electrode on Neural Tissue: New Directions in Neurostimulation Technology Development
Abstract Neuromodulation technologies have gained considerable attention for their clinical potential in treating neurological disorders and advancing cognition research. However, traditional methods like electrical stimulation and optogenetics face technical and biological challenges that limit their therapeutic and research applications. A promising alternative, photoelectric neurostimulation, uses near‐infrared light to generate electrical pulses and thus enables stimulation of neuronal activity without genetic alterations. This study explores various design strategies to enhance photoelectric stimulation with minimally invasive, ultrasmall, untethered carbon electrodes. Employing a multiphoton laser as the near‐infrared (NIR) light source, benchtop experiments are conducted using a three‐electrode setup and chronopotentiometry to record photo‐stimulated voltage. In vivo evaluations utilize Thy1‐GCaMP6s mice with acutely implanted ultrasmall carbon electrodes. Results highlighted the beneficial effects of high duty‐cycle laser scanning and photovoltaic polymer interfaces on the photo‐stimulated voltages by the implanted electrode. Additionally, the promising potential of carbon‐based diamond electrodes are demonstrated for photoelectric stimulation and the application of photoelectric stimulation in precise chemical delivery by loading mesoporous silica nanoparticles (SNPs) co‐deposited with polyethylenedioxythiophene (PEDOT). Together, these findings on photoelectric stimulation utilizing ultrasmall carbon electrodes underscore its immense potential for advancing the next generation of neurostimulation technology.
more »
« less
- Award ID(s):
- 1943906
- PAR ID:
- 10524263
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 34
- Issue:
- 41
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Implanted neural stimulation and recording devices hold vast potential to treat a variety of neurological conditions, but the invasiveness, complexity, and cost of the implantation procedure greatly reduce access to an otherwise promising therapeutic approach. To address this need, a novel electrode that begins as an uncured, flowable prepolymer that can be injected around a neuroanatomical target to minimize surgical manipulation is developed. Referred to as the Injectrode, the electrode conforms to target structures forming an electrically conductive interface which is orders of magnitude less stiff than conventional neuromodulation electrodes. To validate the Injectrode, detailed electrochemical and microscopy characterization of its material properties is performed and the feasibility of using it to stimulate the nervous system electrically in rats and swine is validated. The silicone‐metal‐particle composite performs very similarly to pure wire of the same metal (silver) in all measures, including exhibiting a favorable cathodic charge storage capacity (CSCC) and charge injection limits compared to the clinical LivaNova stimulation electrode and silver wire electrodes. By virtue of its simplicity, the Injectrode has the potential to be less invasive, more robust, and more cost‐effective than traditional electrode designs, which could increase the adoption of neuromodulation therapies for existing and new indications.more » « less
-
Abstract Objective.Characterizing the relationship between neuron spiking and the signals that electrodes record is vital to defining the neural circuits driving brain function and informing clinical brain-machine interface design. However, high electrode biocompatibility and precisely localizing neurons around the electrodes are critical to defining this relationship.Approach.Here, we demonstrate consistent localization of the recording site tips of subcellular-scale (6.8µm diameter) carbon fiber electrodes and the positions of surrounding neurons. We implanted male rats with carbon fiber electrode arrays for 6 or 12+ weeks targeting layer V motor cortex. After explanting the arrays, we immunostained the implant site and localized putative recording site tips with subcellular-cellular resolution. We then 3D segmented neuron somata within a 50µm radius from implanted tips to measure neuron positions and health and compare to healthy cortex with symmetric stereotaxic coordinates.Main results.Immunostaining of astrocyte, microglia, and neuron markers confirmed that overall tissue health was indicative of high biocompatibility near the tips. While neurons near implanted carbon fibers were stretched, their number and distribution were similar to hypothetical fibers placed in healthy contralateral brain. Such similar neuron distributions suggest that these minimally invasive electrodes demonstrate the potential to sample naturalistic neural populations. This motivated the prediction of spikes produced by nearby neurons using a simple point source model fit using recorded electrophysiology and the mean positions of the nearest neurons observed in histology. Comparing spike amplitudes suggests that the radius at which single units can be distinguished from others is near the fourth closest neuron (30.7 ± 4.6µm, ± S) in layer V motor cortex.Significance.Collectively, these data and simulations provide the first direct evidence that neuron placement in the immediate vicinity of the recording site influences how many spike clusters can be reliably identified by spike sorting.more » « less
-
Ultrasmall microelectrode arrays have the potential to improve the spatial resolution of microstimulation. Carbon fiber (CF) microelectrodes with cross-sections of less than 8 μm have been demonstrated to penetrate cortical tissue and evoke minimal scarring in chronic implant tests. In this study, we investigate the stability and performance of neural stimulation electrodes comprised of electrodeposited platinum-iridium (PtIr) on carbon fibers. We conducted pulse testing and characterized charge injection in vitro and recorded voltage transients in vitro and in vivo. Standard electrochemical measurements (impedance spectroscopy and cyclic voltammetry) and visual inspection (scanning electron microscopy) were used to assess changes due to pulsing. Similar to other studies, the application of pulses caused a decrease in impedance and a reduction in voltage transients, but analysis of the impedance data suggests that these changes are due to surface modification and not permanent changes to the electrode. Comparison of scanning electron microscope images before and after pulse testing confirmed electrode stability.more » « less
-
IntroductionThe effectiveness of neural interfacing devices depends on the anatomical and physiological properties of the target region. Multielectrode arrays, used for neural recording and stimulation, are influenced by electrode placement and stimulation parameters, which critically impact tissue response. This study presents a multiscale computational model that predicts responses of neurons in the hippocampus—a key brain structure primarily involved in memory formation, especially the conversion of short-term memories into long-term storage—to extracellular electrical stimulation, providing insights into the effects of electrode positioning and stimulation strategies on neuronal response. MethodsWe modeled the rat hippocampus with highly detailed axonal projections, integrating the Admittance Method to model propagation of the electric field in the tissue with the NEURON simulation platform. The resulting model simulates electric fields generated by virtual electrodes in the perforant path of entorhinal cortical (EC) axons projecting to the dentate gyrus (DG) and predicts DG granule cell activation via synaptic inputs. ResultsWe determined stimulation amplitude thresholds required for granule cell activation at different electrode placements along the perforant path. Membrane potential changes during synaptic activation were validated against experimental recordings. Additionally, we assessed the effects of bipolar electrode placements and stimulation amplitudes on direct and indirect activation. ConclusionStimulation amplitudes above 750 μA consistently activate DG granule cells. Lower stimulation amplitudes are required for axonal activation and downstream synaptic transmission when electrodes are placed in the molecular layer, infra-pyramidal region, and DG crest. SignificanceThe study and underlying methodology provide useful insights to guide the stimulation protocol required to activate DG granule cells following the stimulation of EC axons; the complete realistic 3D model presented constitutes an invaluable tool to strengthen our understanding of hippocampal response to electrical stimulation and guide the development and placement of prospective stimulation devices and strategies.more » « less
An official website of the United States government
