This paper develops approximate message passing algorithms to optimize multi-species spherical spin glasses. We first show how to efficiently achieve the algorithmic threshold energy identified in our companion work (Huang and Sellke in arXiv preprint, 2023.
In this note, we address the validity of certain exact results from turbulence theory in the deterministic setting. The main tools, inspired by the work of Duchon and Robert (2000
- PAR ID:
- 10524334
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Nonlinearity
- Volume:
- 37
- Issue:
- 9
- ISSN:
- 0951-7715
- Format(s):
- Medium: X Size: Article No. 095002
- Size(s):
- Article No. 095002
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract arXiv:2303.12172 ), thus confirming that the Lipschitz hardness result proved therein is tight. Next we give two generalized algorithms which produce multiple outputs and show all of them are approximate critical points. Namely, in anr -species model we construct approximate critical points when the external field is stronger than a “topological trivialization phase boundary, and exponentially many such points in the complementary regime. We also compute the local behavior of the Hamiltonian around each. These extensions are relevant for another companion work (Huang and Sellke in arXiv preprint, 2023.$$2^r$$ arXiv:2308.09677 ) on topological trivialization of the landscape. -
Abstract The Kruskal–Szekeres coordinate construction for the Schwarzschild spacetime could be interpreted simply as a squeezing of the
t -line into a single point, at the event horizon . Starting from this perspective, we extend the Kruskal charting to spacetimes with two horizons, in particular the Reissner–Nordström manifold, . We develop a new method to construct Kruskal-like coordinates through casting the metric in new null coordinates, and find two algebraically distinct ways to chart , referred to as classes: type-I and type-II within this work. We pedagogically illustrate our method by crafting two compact, conformal, and global coordinate systems labeled and as an example for each class respectively, and plot the corresponding Penrose diagrams. In both coordinates, the metric differentiability can be promoted to in a straightforward way. Finally, the conformal metric factor can be written explicitly in terms of thet andr functions for both types of charts. We also argued that the chart recently reported in Soltani (2023 arXiv:2307.11026) could be viewed as another example for the type-II classification, similar to . -
Abstract We measure the thermal electron energization in 1D and 2D particle-in-cell simulations of quasi-perpendicular, low-beta (
β p= 0.25) collisionless ion–electron shocks with mass ratiom i/m e= 200, fast Mach number –4, and upstream magnetic field angleθ Bn= 55°–85° from the shock normal . It is known that shock electron heating is described by an ambipolar, -parallel electric potential jump, ΔB ϕ ∥, that scales roughly linearly with the electron temperature jump. Our simulations have –0.2 in units of the pre-shock ions’ bulk kinetic energy, in agreement with prior measurements and simulations. Different ways to measureϕ ∥, including the use of de Hoffmann–Teller frame fields, agree to tens-of-percent accuracy. Neglecting off-diagonal electron pressure tensor terms can lead to a systematic underestimate ofϕ ∥in our low-β pshocks. We further focus on twoθ Bn= 65° shocks: a ( ) case with a long, 30d iprecursor of whistler waves along , and a ( ) case with a shorter, 5d iprecursor of whistlers oblique to both and ;B d iis the ion skin depth. Within the precursors,ϕ ∥has a secular rise toward the shock along multiple whistler wavelengths and also has localized spikes within magnetic troughs. In a 1D simulation of the ,θ Bn= 65° case,ϕ ∥shows a weak dependence on the electron plasma-to-cyclotron frequency ratioω pe/Ωce, andϕ ∥decreases by a factor of 2 asm i/m eis raised to the true proton–electron value of 1836. -
Abstract We investigate a micro-scale model of superfluidity derived by Pitaevskii (1959
Sov. Phys. JETP 8 282–7) to describe the interacting dynamics between the superfluid and normal fluid phases of Helium-4. The model involves the nonlinear Schrödinger equation (NLS) and the Navier–Stokes equations, coupled to each other via a bidirectional nonlinear relaxation mechanism. Depending on the nature of the nonlinearity in the NLS, we prove global/almost global existence of solutions to this system in —strong in wavefunction and velocity, and weak in density. -
Toward Astrometric Constraints on a Supermassive Black Hole Binary in the Early-type Galaxy NGC 4472
Abstract The merger of two galaxies, each hosting a supermassive black hole (SMBH) of mass 106
M ⊙or more, could yield a bound SMBH binary. For the early-type galaxy NGC 4472, we study how astrometry with a next-generation Very Large Array could be used to monitor the reflex motion of the primary SMBH of massM pri, as it is tugged on by the secondary SMBH of mass . Casting the orbit of the putative SMBH binary in terms of its periodP , semimajor axisa bin, and mass ratio , we find the following: (1) Orbits with fiducial periods ofP = 4 yr and 40 yr could be spatially resolved and monitored. (2) For a 95% accuracy of 2μ as per monitoring epoch, subparsec values ofa bincould be accessed over a range of mass ratios notionally encompassing major and minor galaxy mergers. (3) If no reflex motion is detected forM priafter 1 (10) yr of monitoring, an SMBH binary with periodP = 4 (40) yr and mass ratioq > 0.01 (0.003) could be excluded. This would suggest no present-day evidence for a past major merger like that recently simulated, where scouring by aq ∼ 1 SMBH binary formed a stellar core with kinematic traits like those of NGC 4472. (4) Astrometric monitoring could independently check the upper limits onq from searches for continuous gravitational waves from NGC 4472.