ABSTRACT Medical procedures are an essential part of healthcare delivery, and the acquisition of procedural skills is a critical component of medical education. Unfortunately, procedural skill is not evenly distributed among medical providers. Skills may vary within departments or institutions, and across geographic regions, depending on the provider’s training and ongoing experience. We present a mixed reality real-time communication system to increase access to procedural skill training and to improve remote emergency assistance. Our system allows a remote expert to guide a local operator through a medical procedure. RGBD cameras capture a volumetric view of the local scene including the patient, the operator, and the medical equipment. The volumetric capture is augmented onto the remote expert’s view to allow the expert to spatially guide the local operator using visual and verbal instructions. We evaluated our mixed reality communication system in a study in which experts teach the ultrasound-guided placement of a central venous catheter (CVC) to students in a simulation setting. The study compares state-of-theart video communication against our system. The results indicate that our system enhances and offers new possibilities for visual communication compared to video teleconference-based training.
more »
« less
Features of adaptive training algorithms for improved complex skill acquisition
Training complex skills is typically accomplished by means of a trainer or mediator who tailors instruction to the individual trainee. However, facilitated training is costly and labor intensive, and the use of a mediator is infeasible in remote or extreme environments. Imparting complex skills in applications like long-duration human spaceflight, military field operations, or remote medicine may require automated training algorithms. Virtual reality (VR) is an effective, easily programmable, immersive training medium that has been used widely across fields. However, there remain open questions in the search for the most effective algorithms for guiding automated training progression. This study investigates the effects of responsiveness, personalization, and subtask independence on the efficacy of automated training algorithms in VR for training complex, operationally relevant tasks. Thirty-two subjects (16M/16F, 18–54 years) were trained to pilot and land a spacecraft on Mars within a VR simulation using four different automated training algorithms. Performance was assessed in a physical cockpit mock-up. We found that personalization results in faster skill acquisition on average when compared with a standardized progression built for a median subject (p= 0.0050). The standardized progression may be preferable when consistent results are desired across all subjects. Independence of the difficulty adjustments between subtasks may lead to increased skill acquisition, while lockstep in the progression of each subtask increases self-reported flow experience (p= 0.01), fluency (p= 0.02), and absorption (p= 0.01) on the Flow Short Scale. Data visualization suggests that highly responsive algorithms may lead to faster learning progressions and higher skill acquisition for some subjects. Improving transfer of skills from training to testing may require either high responsiveness or a standardized training progression. Optimizing the design of automated, individually adaptive algorithms around the training needs of a group may be useful to increase skill acquisition for complex operational tasks.
more »
« less
- Award ID(s):
- 1955109
- PAR ID:
- 10524557
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Virtual Reality
- Volume:
- 5
- ISSN:
- 2673-4192
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Training for robotic surgery can be challenging due the complexity of the technology, as well as a high demand for the robotic systems that must be primarily used for clinical care. While robotic surgical skills are traditionally trained using the robotic hardware coupled with physical simulated tissue models and test-beds, there has been an increasing interest in using virtual reality simulators. Use of virtual reality (VR) comes with some advantages, such as the ability to record and track metrics associated with learning. However, evidence of skill transfer from virtual environments to physical robotic tasks has yet to be fully demonstrated. In this work, we evaluate the effect of virtual reality pre-training on performance during a standardized robotic dry-lab training curriculum, where trainees perform a set of tasks and are evaluated with a score based on completion time and errors made during the task. Results show that VR pre-training is weakly significant ([Formula: see text]) in reducing the number of repetitions required to achieve proficiency on the robotic task; however, it is not able to significantly improve performance in any robotic tasks. This suggests that important skills are learned during physical training with the surgical robotic system that cannot yet be replaced with VR training.more » « less
-
Abstract BackgroundA robotic rehabilitation gym can be defined as multiple patients training with multiple robots or passive sensorized devices in a group setting. Recent work with such gyms has shown positive rehabilitation outcomes; furthermore, such gyms allow a single therapist to supervise more than one patient, increasing cost-effectiveness. To allow more effective multipatient supervision in future robotic rehabilitation gyms, we propose an automated system that could dynamically assign patients to different robots within a session in order to optimize rehabilitation outcome. MethodsAs a first step toward implementing a practical patient-robot assignment system, we present a simplified mathematical model of a robotic rehabilitation gym. Mixed-integer nonlinear programming algorithms are used to find effective assignment and training solutions for multiple evaluation scenarios involving different numbers of patients and robots (5 patients and 5 robots, 6 patients and 5 robots, 5 patients and 7 robots), different training durations (7 or 12 time steps) and different complexity levels (whether different patients have different skill acquisition curves, whether robots have exit times associated with them). In all cases, the goal is to maximize total skill gain across all patients and skills within a session. ResultsAnalyses of variance across different scenarios show that disjunctive and time-indexed optimization models significantly outperform two baseline schedules: staying on one robot throughout a session and switching robots halfway through a session. The disjunctive model results in higher skill gain than the time-indexed model in the given scenarios, and the optimization duration increases as the number of patients, robots and time steps increases. Additionally, we discuss how different model simplifications (e.g., perfectly known and predictable patient skill level) could be addressed in the future and how such software may eventually be used in practice. ConclusionsThough it involves unrealistically simple scenarios, our study shows that intelligently moving patients between different rehabilitation robots can improve overall skill acquisition in a multi-patient multi-robot environment. While robotic rehabilitation gyms are not yet commonplace in clinical practice, prototypes of them already exist, and our study presents a way to use intelligent decision support to potentially enable more efficient delivery of technologically aided rehabilitation.more » « less
-
With the advent of online educational platforms and the advances in pedagogical technologies, self-directed learning has emerged as one of the most popular modes of learning. Distance education---elevated by the COVID-19 pandemic---involves methods of instruction through a variety of remote activities which often rely on educational videos for mastery. In the absence of direct student engagement, the asynchronous nature of remote activities may deteriorate the quality of education for learners. Students often have an illusion of skill acquisition after watching videos, which results in overestimation of abilities and skills. We focus on the efficacy of skill acquisition through interactive technologies and assess their impact on computational thinking in comparison with delivery through other traditional media (e.g. videos and texts). In particular, we investigate the relationship between actual learning, perception of learning, and learners' confidence in adult learners. Our results reveal intriguing observations about the role of interactivity and visualization and their implications on the pedagogical design for self-directed learning modules.more » « less
-
Spatial reasoning skills have been linked to success in STEM and are considered an important part of geoscience problem solving. Most agree that these are a group of skills rather than a single ability, though there is no agreement on the full list of constituent skills. Few studies have attempted to isolate specific spatial skills for deliberate training. We conducted an experiment to isolate and train the skill of recognizing horizontal (a crucial component in measuring the orientation of planes) using a dedicated Virtual Reality (VR) module. We recruited 21 undergraduate students from natural science and social science majors for the study, which consisted of a pretest, 15-minute training, and posttest. The pre- and posttests consisted of a short multiple choice vocabulary quiz, 5 hand-drawn and 5 multiple choice Water Level Task (WLT) questions, and the Vandenberg and Kuse Mental Rotation Task (MRT). Participants were sorted based on pre-test Water Level Task scores, only those with scores <80% were placed in an intervention group and randomly assigned to training, either in VR (experimental) or on paper (standard), of about 15 minutes. The high-scoring participants received no training (comparison). All three groups of participants completed a posttest after the training (if any). After removing three participants who did not return for the posttest session, we had 18 participants in total: 6 in VR, 7 in the comparison group, and 5 in the standard group. Repeated measures ANOVA of the pre to post hand-drawn WLT scores shows at least one group is different (p=.002) and Tukey’s Post-Hoc analysis indicates that the VR group improved significantly more that the high-scoring comparison group (Mean Difference = -1.857, p = .001) and the standard group (Mean Difference = -1.200, p = .049). While any significant result is encouraging, a major limitation of this study is the small sample size and unequal variances on both the pretest (Levene’s HOV test, F = 7.50, p = .006) and posttest (F = 13.53, p < .001), despite random assignment. More trials are needed to demonstrate reproducibility. While more tests are needed, this preliminary study shows the potential benefit of VR in training spatial reasoning skills.more » « less