This content will become publicly available on March 2, 2024
- NSF-PAR ID:
- 10443103
- Date Published:
- Journal Name:
- SIGCSE 2023: Proceedings of the 54th ACM Technical Symposium on Computer Science Education
- Volume:
- 1
- Page Range / eLocation ID:
- 778 to 784
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Computer Science (CS) is not introduced equitably across K-12 schools, yet it is increasingly a necessary skill regardless of vocational pathway. Co-curricular activities such as summer camps have become a popular way to introduce CS to K-12 students. Researchers at our institution, through partnerships with other educational institutions and practitioners, developed a transdisciplinary approach of teaching CS in K-12 informal learning environments. Building on positive results in the K-12 informal learning environment, researchers are exploring the applicability of the transdisciplinary modules in formal instruction for early college learners in CS0 and CS1 courses. This paper explores self-efficacy data collected from multiple CS0 and CS1 courses. Learners include freshmen in computing majors and in non-computing majors. We compare their self efficacy growth in computing across race and gender, considering their formal or informal CS education experiences prior to entering college. This work is a part of a larger effort to redesign CS0 and CS1 courses to introduce more complex concepts and important design concepts such as parallel and distributed computing earlier in the curriculum. The authors’ longer-term goal is to investigate active learning strategies that will introduce higher level computer science topics early in the curriculum to enable students to recognize content applicability earlier in their college pathway.more » « less
-
Dispositions, along with skills and knowledge, form the three components of competency-based education. Moreover, studies have shown dispositions to be necessary for a successful career. However, unlike evidence-based teaching and learning approaches for knowledge acquisition and skill development, few studies focus on translating dispositions into observable behavioral patterns. An operationalization of dispositions, however, is crucial for students to understand and achieve respective learning outcomes in computing courses. This paper describes a multi-institutional study investigating students’ understanding of dispositions in terms of their behaviors while completing coursework. Students in six computing courses at four different institutions filled out a survey describing an instance of applying each of the five surveyed dispositions (adaptable, collaborative, persistent, responsible, and self-directed) in the courses’ assignments. The authors evaluated data by using Mayring’s qualitative content analysis. The result was a coding scheme with categories summarizing students’ concepts of dispositions and how they see themselves applying dispositions in the context of computing. These results are a first step in understanding dispositions in computing education and how they manifest in student behavior. This research has implications for educators developing new pedagogical approaches to promote and facilitate dispositions. Moreover, the operationalized behaviors constitute a starting point for new assessment strategies of dispositions.more » « less
-
Abstract This paper presents an implementation of Connected Spaces (CxS)—an ambient help seeking interface designed and developed for a project‐based computing classroom. We use actor network theory (ANT) to provide an underutilized posthumanist lens to understand the creation of collaborative connections in this Computational Action‐based implementation. Posthumanism offers an emerging and critical extension to sociocultural perspectives on understanding learning, by pushing us to decenter the human, and consider the active roles that human and non‐human entities play in learning environments by actively shaping each other. We analyse how students in this class adjusted their help‐seeking and collaborative habits following the introduction of CxS, a tool designed to foster (more inter‐group) collaboration. ANT proposes generalized symmetry—a principle of considering human, non‐human and more than human entities with equivalent and comparable agency, leading to describing phenomena as networks of actors in different evolving relationships with each other. Analysing collaborative interactions as fostered by CxS using an ANT approach supports design‐based research—an iterative design revision process highlighting understandings about design as well as learning—by providing a temporal and informative lens into the relationship between actors and tools within the environment. Our key findings include a framing of technologies in classrooms as bridging
agentic gaps between students and becoming actors engaging in different behaviours; learners enacting new agencies through technologies (for instance a more comfortable non‐intrusive help seeker), and the need for voicing and teachers to connect help networks in CxS equipped classrooms.Practitioner notes What is already known about this topic
Collaborative learning is a valuable skill and practice; opportunities to mentor others are critical in empowering minoritized learners, especially in STEM and computing disciplines.
School norms solidify a power and expertise hierarchy between teachers and learners and fail to productively support learners in learning from each other.
Additionally, lack of awareness about peers' knowledge is a common hindrance in students knowing who to ask for help and how.
What this paper adds
An example of a designed interface called Connected Spaces with potential to foster more inter‐student collaboration, especially outside of mandated within‐group collaboration—in the form of cross‐group help seeking and help giving.
A design based research study using actor network theory highlighting the limitations of Connected Spaces in sparking notable behaviour change among students by itself but being retooled as a teacher support tool in enabling cross‐group collaborations.
Presenting conceptions of collaboration through technologies as bridging agentic gaps and acting with new agencies in performing help‐seeking related actions.
Provoking the idea of testing emerging technologies in classrooms along with sharing our analyses and reflections with the classroom as a key idea in computing education—surfacing the gap between designed intentions and the different kinds of extra social work needed in the on‐ground success of different technologies.
Implications for practice and/or policy
Designers and researchers should create and test more interfaces alongside teachers across different classrooms and contexts aimed at supporting different kinds of voluntary collaborative interactions.
Curricula, standards and school practices should further center providing students with opportunities to engage as mentors and build communities of learning across disciplines to empower minoritized students.
Researchers engaging in design based research should consider using more posthumanist lenses to examine educational technologies and how they affect change in learning environments.
-
Engineering education aims to create a learning environment capable of developing vital engineering skill sets, preparing students to enter the workforce and succeed as future leaders. With all the rapid technological advancements, new engineering challenges continuously emerge, impeding the development of engineering skills. This insufficiency in developing the required skills resulted in high regression rates in students’ GPAs, resulting in industries reporting graduates’ unsatisfactory performance. From a pedagogical perspective, this problem is highly correlated with traditional learning methods that are inadequate for engaging students and improving their learning experience when adopted alone. Accordingly, educators have incorporated new learning methodologies to address the pre-defined problem and enhance the students’ learning experience. However, many of the currently adopted teaching methods still lack the potential to expose students to practical examples, and they are inefficient among engineering students, who tend to be active learners and prefer to use a variety of senses. To address this, our research team proposes integrating the technology of virtual reality (VR) into the laboratory work of engineering technology courses to improve the students’ learning experience and engagement. VR technology, an immersive high-tech media, was adopted to develop an interactive teaching module on hydraulic gripper designs in a VR construction-like environment. The module aims to expose engineering technology students to real-life applications by providing a more visceral experience than screen-based media through the generation of fully computer-simulated environments in which everything is digitized. This work presents the development and implementation of the VR construction lab module and the corresponding gripper designs. The virtual gripper models are developed using Oculus Virtual Reality (OVR) Metrics Tool for Unity, a Steam VR Overlay utility created to make visualizing the desktop in a VR setting simple and intuitive. The execution of the module comprises building the VR environment, designing and importing the gripper models, and creating a user-interface VR environment to visualize and interact with the model (gripper assembly/mechanism testing). Besides the visualization, manipulation, and interaction, the developed VR system allows for additional features like displaying technical information, guiding students throughout the assembly process, and other specialized options. Thus, the developed interactive VR module will serve as a perpetual mutable platform that can be readily adjusted to allow future add-ons to address future educational opportunities.more » « less
-
Most chemical engineering core classes are best taught when students are exposed to a face-to-face learning/teaching environment. With the arrival of coronavirus disease 2019 (COVID-19), the whole education system and the setting were disrupted at Hampton University (HU). Traditional in-person face-to-face classes were forced to move to remote instructions to maintain a healthy and safe campus environment and minimize the spread of COVID-19 on campus and in the community. As an instructor teaching core courses and unit operations laboratory in the Department of Chemical Engineering, it was challenging to move completely virtual and deliver instructions remotely without affecting students' learning outcomes. However, with the appropriate modern technologies and adapting to the students' change and needs, online teaching can be done efficiently and can still have efficient learning outcomes. Various activities were introduced to make the online/virtual class environment engaging in developing technical and professional skills and inducing learning for students. Using the latest educational tools and online resources, formative assessments were conducted throughout the course in an effort to improve student learning and instructor teaching. In addition to that, innovative ways of technology were also used to evaluate student learning and understanding of the material for grading and reporting purposes. Many of the modern educational tools, including Blackboard Collaborate Ultra, Ka-hoot, linoit, surveys, polls, and chemical engineering processes’ simulations and videos were in-troduced to make the synchronous sessions interactive. Likert-like surveys conducted were anal-yses to gauge the effectiveness of incorporation of technology during remote learning. This paper describes the innovative use of technologies to adapt to the COVID-19 pandemic in the Chemical Engineering Classes. It will also explain the strategies to assess the mode of delivery efficacy and how to change the course of teaching to adapt to the students' changing needs.more » « less