Abstract This project is funded by the US National Science Foundation (NSF) through their NSF RAPID program under the title “Modeling Corona Spread Using Big Data Analytics.” The project is a joint effort between the Department of Computer & Electrical Engineering and Computer Science at FAU and a research group from LexisNexis Risk Solutions. The novel coronavirus Covid-19 originated in China in early December 2019 and has rapidly spread to many countries around the globe, with the number of confirmed cases increasing every day. Covid-19 is officially a pandemic. It is a novel infection with serious clinical manifestations, including death, and it has reached at least 124 countries and territories. Although the ultimate course and impact of Covid-19 are uncertain, it is not merely possible but likely that the disease will produce enough severe illness to overwhelm the worldwide health care infrastructure. Emerging viral pandemics can place extraordinary and sustained demands on public health and health systems and on providers of essential community services. Modeling the Covid-19 pandemic spread is challenging. But there are data that can be used to project resource demands. Estimates of the reproductive number (R) of SARS-CoV-2 show that at the beginning of the epidemic, each infectedmore »
Dynamically adjusting case reporting policy to maximize privacy and public health utility in the face of a pandemic
Abstract Objective Supporting public health research and the public’s situational awareness during a pandemic requires continuous dissemination of infectious disease surveillance data. Legislation, such as the Health Insurance Portability and Accountability Act of 1996 and recent state-level regulations, permits sharing deidentified person-level data; however, current deidentification approaches are limited. Namely, they are inefficient, relying on retrospective disclosure risk assessments, and do not flex with changes in infection rates or population demographics over time. In this paper, we introduce a framework to dynamically adapt deidentification for near-real time sharing of person-level surveillance data. Materials and Methods The framework leverages a simulation mechanism, capable of application at any geographic level, to forecast the reidentification risk of sharing the data under a wide range of generalization policies. The estimates inform weekly, prospective policy selection to maintain the proportion of records corresponding to a group size less than 11 (PK11) at or below 0.1. Fixing the policy at the start of each week facilitates timely dataset updates and supports sharing granular date information. We use August 2020 through October 2021 case data from Johns Hopkins University and the Centers for Disease Control and Prevention to demonstrate the framework’s effectiveness in maintaining the PK11 threshold more »
- Award ID(s):
- 2029661
- Publication Date:
- NSF-PAR ID:
- 10362769
- Journal Name:
- Journal of the American Medical Informatics Association
- Volume:
- 29
- Issue:
- 5
- Page Range or eLocation-ID:
- 853 to 863
- ISSN:
- 1527-974X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The COVID-19 pandemic highlights the need for broad dissemination of case surveillance data. Local and global public health agencies have initiated efforts to do so, but there remains limited data available, due in part to concerns over privacy. As a result, current COVID-19 case surveillance data sharing policies are based on strong adversarial assumptions, such as the expectation that an attacker can readily re-identify individuals based on their distinguishability in a dataset. There are various re-identification risk measures to account for adversarial capabilities; however, the current array insufficiently accounts for real world data challenges - particularly issues of missing records in resources of identifiable records that adversaries may rely upon to execute attacks (e.g., 10 50-year-old male in the de-identified dataset vs. 5 50-year-old male in the identified dataset). In this paper, we introduce several approaches to amend such risk measures and assess re-identification risk in light of how an attacker's capabilities relate to missing records. We demonstrate the potential for these measures through a record linkage attack using COVID-19 case surveillance data and voter registration records in the state of Florida. Our findings demonstrate that adversarial assumptions, as realized in a risk measure, can dramatically affect re-identification risk estimation.more »
-
Sharing real-time data originating from connected devices is crucial to real-world Internet of Things (IoT) applications, especially using artificial intelligence/machine learning (AI/ML). Such IoT data are typically shared with multiple parties for different purposes based on data contracts. However, supporting these contracts under the dynamic change of IoT data variety and velocity faces many challenges when such parties (aka tenants) want to obtain data based on the data value to their specific contextual purposes. This work proposes a novel dynamic context-based policy enforcement framework to support IoT data sharing based on dynamic contracts. Our enforcement framework allows IoT Data Hub owners to define extensible rules and metrics to govern the tenants in accessing the shared data on the Edge based on policies defined in static and dynamic contexts. For example, given the change of situations, we can define and enforce a policy that allows pushing data to some tenants via a third-party means, while typically, these tenants must obtain and process the data based on a pre-defined means. We have developed a proof-of-concept prototype for sharing sensitive data such as surveillance camera videos to illustrate our proposed framework. Our experimental results demonstrated that our framework could soundly and timely enforcemore »
-
Livestock industry is daily producing large amounts of multi-scale data (pathogen-, animal-, site-, system-, regional- level) from different sources such as diagnostic laboratories, trade and production records, management and environmental monitoring systems; however, all these data are still presented and used separately and are largely infra-utilized to timely (i.e., near real-time) inform livestock health decisions. Recent advances in the automation of data capture, standardization, multi-scale integration and sharing/communication (i.e. The Internet Of Things) as well as in the development of novel data mining analytical and visualization capabilities specifically adapted to the livestock industry are dramatically changing this paradigm. As a result, we expect vertical advances in the way we prevent and manage livestock diseases both locally and globally. Our team at the Center for Animal Disease Modeling and Surveillance (CADMS), in collaboration with researchers at Iowa State University and industry leaders at Boehringer Ingelheim and GlobalVetLINK have been working in an exceptional research-industry partnership to develop key data connections and novel Big Data capabilities within the Disease BioPortal (http://bioportal.ucdavis.edu/). This web-based platform includes automation of diagnostic interpretations and facilitates the combined analysis of health, production and trade data using novel space-time-genomic visualization and data mining tools. Access to confidential databasesmore »
-
Existing collaborations among public health practitioners, veterinarians, and ecologists do not sufficiently consider illegal wildlife trade in their surveillance, biosafety, and security (SB&S) efforts even though the risks to health and biodiversity from these threats are significant. We highlight multiple cases to illustrate the risks posed by existing gaps in understanding the intersectionality of the illegal wildlife trade and zoonotic disease transmission. We argue for more integrative science in support of decision-making using the One Health approach. Opportunities abound to apply transdisciplinary science to sustainable wildlife trade policy and programming, such as combining on-the-ground monitoring of health, environmental, and social conditions with an understanding of the operational and spatial dynamics of illicit wildlife trade. We advocate for (1) a surveillance sample management system for enhanced diagnostic efficiency in collaboration with diverse and local partners that can help establish new or link existing surveillance networks, outbreak analysis, and risk mitigation strategies; (2) novel analytical tools and decision support models that can enhance self-directed local livelihoods by addressing monitoring, detection, prevention, interdiction, and remediation; (3) enhanced capacity to promote joint SB&S efforts that can encourage improved human and animal health, timely reporting, emerging disease detection, and outbreak response; and, (4) enhanced monitoringmore »