Despite the emergence of eco-friendly solvents and scalable methods for polymeric membrane fabrication, studies on the impacts of solvent synthesis and manufacturing scale-up have not been conducted. To this end, a life cycle assessment (LCA) was developed with the goal of determining the global environmental and health impacts of producing polysulfone (PSf) membranes with the solvents PolarClean and γ-valerolactone (GVL) via doctor blade extrusion (DBE) and slot die coating (SDC). Along with PolarClean and GVL, dimethylacetamide (DMAc) and N-methyl-2-pyyrolidone (NMP) were included in the LCA as conventional solvents for comparison. The dope solution viscosity had a major influence on the material inventories; to produce a normalized membrane unit on a surface area basis, a larger quantity of PSf-PolarClean-GVL materials was required due to its high viscosity. The life cycle impact assessment found electricity and PolarClean to be major contributing parameters to multiple impact categories during membrane fabrication. The commercial synthesis route of PolarClean selected in this study required hazardous materials derived from petrochemicals, which increased its impact on membrane fabrication. Due to more materials being required to fabricate membranes via SDC to account for tool fluid priming, the PSf-PolarClean-GVL membrane fabricated via SDC exhibited the highest impacts. The amount of electricity and concentration of PolarClean were the most sensitive parameters according to Spearman’s rank coefficient analysis. A scenario analysis in which the regional energy grid was substituted found that using the Swedish grid, which comprises far more renewable technologies than the global and US energy grids, significantly lowered impacts in most categories. Despite the reported eco-friendly benefits of using PolarClean and GVL as alternatives to conventional organic solvents, the results in this study provide a wider perspective of membrane fabrication process impacts, highlighting that upstream impacts can counterbalance the beneficial properties of alternative materials.
more »
« less
Performance and Environmental Assessment of Biochar-Based Membranes Synthesized from Traditional and Eco-Friendly Solvents
Water contamination resulting from coal spills is one of the largest environmental problems affecting communities in the Appalachia Region of the United States. This coal slurry contains potentially toxic substances, such as hydrocarbons, heavy metals, and coal cleaning chemicals, and its leakage into water bodies (lakes, rivers, and aquifers) can lead to adverse health effects not only for freshwater bodies and plant life but also for humans. This study focused on two major experiments. The first experiment involved the use of biochar to create a biochar–polysulfone (BC-PSf) flat-sheet multifunctional membrane to remove organic contaminants, and the other major experiment compared eco-friendly (gamma-valerolactone—GVL; Rhodiasolv® PolarClean—PC) and petroleum-derived solvents (i.e., N-methyl-pyrrolidone—NMP) in the fabrication of the biochar–polysulfone membranes. The resulting membranes were tested for their efficiency in removing both positively and negatively charged organic contaminants from the collected water at varying pH values. A comparative life cycle assessment (LCA) with accompanying uncertainty and sensitivity analyses was carried out to understand the global environmental impacts of incorporating biochar, NMP, GVL, and PC in the synthesis of PSf/NMP, BC-PSf/NMP, PSf/GVL, BC-PSf/GVL, PSf/PC, and BC-PSf/PC membranes at a set surface area of 1000 m2. The results showed that the addition of biochar to the membrane matrix increased the surface area of the membranes and improved both their adsorptive and mechanical properties. The membranes with biochar incorporated in their matrix showed a higher potential for contaminant removal than those without biochar. The environmental impacts normalized to the BC-PSf/GVL membrane showed that the addition of biochar increased global warming impacts, eutrophication, and respiratory impacts by over 100% in all the membrane configurations with biochar. The environmental impacts were highly sensitive to biochar addition (Spearman’s coefficient > 0.8). The BC/PSf membrane with Rhodiasolv® PolarClean had the lowest associated global environmental impacts among all the membranes with biochar. Ultimately, this study highlighted potential tradeoffs between functional performance and global environmental impacts regarding choices for membrane fabrication.
more »
« less
- Award ID(s):
- 1922694
- PAR ID:
- 10525359
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Membranes
- Volume:
- 14
- Issue:
- 7
- ISSN:
- 2077-0375
- Page Range / eLocation ID:
- 153
- Subject(s) / Keyword(s):
- adsorptive membranes petroleum-derived solvents eco-friendly solvents biochar life cycle assessment uncertainty assessment sensitivity assessment leaching studies
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Protection against airborne viruses has become very relevant since the outbreak of SARS-CoV-2. Nonwoven face masks along with heating, ventilation, and air conditioning (HVAC) filters have been used extensively to reduce infection rates; however, some of these filter materials provide inadequate protection due to insufficient initial filtration efficiency (FE) and FE decrease with time. Flat sheet porous membranes, which have been used extensively to filter waterborne microbes and particulate matter due to their high FE have the potential to filter air pollutants without compromising its FE over time. Therefore, in this study, single layer polysulfone (PSf) membranes were fabricated via non-solvent induced phase separation (NIPS) and were tested for airflow rate, pressure drop and FE. Polyethylene glycol (PEG) and glycerol were employed as pore-forming agents, and the effect of the primary polymer and pore-forming additive molecular weights (MW) on airflow rate and pressure drop were studied at different concentrations. The thermodynamic stability of dope solutions with different MWs of PSf and PEG in N-methylpyrrolidone (NMP) at different concentrations was determined using cloud-point measurements to construct a ternary phase diagram. Surface composition of the fabricated membranes was characterized using contact angle and X-ray photoelectron spectroscopy (XPS), while membrane morphology was characterized by SEM, and tensile strength experiments were performed to analyze the membrane mechanical strength (MS). It was observed that an increase in PSf and PEG molecular weight and concentration increased airflow and decreased pressure drop. PSf60:PEG20:NMP (15:15:70)% w/w showed the highest air flow rate and lowest pressure drop, but at the expense of the mechanical strength, which was improved significantly by attaching the membrane to a 3D-printed polypropylene support. Lastly, the FE values of the membranes were similar to those of double-layer N95 filters and significantly higher than those of single layer of N95, surgical mask and HVAC (MERV 11) filters.more » « less
-
Abstract Advanced treated municipal wastewater is an important alternative water source for agricultural irrigation. However, the possible persistence of chemical and microbiological contaminants in these waters raise potential safety concerns with regard to reusing treated wastewater for food crop irrigation. Two low-cost and environmentally-friendly filter media, biochar (BC) and zero-valent iron (ZVI), have attracted great interest in terms of treating reused water. Here, we evaluated the efficacy of BC-, nanosilver-amended biochar- (Ag-BC) and ZVI-sand filters, in reducing contaminants of emerging concern (CECs),Escherichia coli (E. coli)and total bacterial diversity from wastewater effluent. Six experiments were conducted with control quartz sand and sand columns containing BC, Ag-BC, ZVI, BC with ZVI, or Ag-BC with ZVI. After filtration, Ag-BC, ZVI, BC with ZVI and Ag-BC with ZVI demonstrated more than 90% (> 1 log) removal ofE. colifrom wastewater samples, while BC, Ag-BC, BC with ZVI and Ag-BC with ZVI also demonstrated efficient removal of tested CECs. Lower bacterial diversity was also observed after filtration; however, differences were marginally significant. In addition, significantly (p < 0.05) higher bacterial diversity was observed in wastewater samples collected during warmer versus colder months. Leaching of silver ions occurred from Ag-BC columns; however, this was prevented through the addition of ZVI. In conclusion, our data suggest that the BC with ZVI and Ag-BC with ZVI sand filters, which demonstrated more than 99% removal of both CECs andE. coliwithout silver ion release, may be effective, low-cost options for decentralized treatment of reused wastewater. Graphical Abstractmore » « less
-
Abstract In this study, loose nanofiltration membranes made of polysulfone dissolved in co-solvents PolarClean and gamma-Valerolactone were prepared via slot die coating (SDC) on a roll-to-roll (R2R) system by directly coating them onto a support layer or free standing. A solution flow rate of 20 mL/min, substrate speed of 17.1 mm/s, and coating gap of 0.1 mm resulted in the formation of membranes without structural defects. Pre-wetting the support layer with dope solution minimized shrinkage of membrane layer thickness and improved interfacial adhesion. Membrane samples produced using SDC exhibited properties and performance consistent with bench-scale doctor blade extruded samples; pre-wetted and uncompressed samples (SDC-3) exhibited the highest rejection of bovine serum albumin (99.20% ± 1.31%) and along with adequate mean permeability during filtration (70.5 ± 8.33 LMH/bar). This study shows that combining sustainable materials development with SDC provides a holistic approach to membrane separations to bridge materials discovery and membrane formation.more » « less
-
In this study, two green organic solvents are reported in LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NMC111)-based slurry preparation and subsequent cathode fabrication for Li ion batteries. NMC111, conductive carbon and poly(vinylidene fluoride) binder composite slurries prepared with methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (PolarClean) and dimethyl isosorbide (DMI) exhibit mechanically stable, crack-free uniform coating structures. Both slurries showed similar shear-thinning viscosity behavior that suggests similar processibility during electrode casting and coating. When used as the cathode in Li/NMC111 half cells, the electrode slurries prepared with PolarClean show promising electrochemical performance metrics with an average specific charge capacity of 155 ± 1 mA h g −1 at C/10 over 100 cycles, comparable to the films (152 ± 3 mA h g −1 at C/10) prepared with traditional N -methyl pyrrolidone (NMP) solvent. The use of PolarClean points to a potential route to replace toxic NMP in cathode fabrication without altering the manufacturing process. However, electrodes prepared with DMI demonstrate inferior electrochemical performance with an average charge capacity of 120 mA h g −1 . Nonetheless, DMI may still offer some promising features and warrants further detailed investigation in terms of compatible electrolyte, tailoring the slurry preparation, and casting conditions.more » « less
An official website of the United States government

