Floodplain inundation has been viewed as a type of binary process set by the relative elevation between river stage and levee crest. However, recent reports in the literature show that this perception may have limited applicability. In particular, through‐bank channels, conduits that cross the main river levees or banks, facilitate conditions for an “inundation continuum,” or inundation for a range of sub‐bankfull flows. Moreover, through‐bank channels and their networks provide a direct hydraulic connection between the main river and the floodplain interior. We analyzed through‐bank channel structure and floodplain topography and compared them to river surface elevation to provide greater insight on floodplain inundation processes. Results show that well‐developed levees with through‐bank channels facilitate frequent through‐bank inundation. Where levees are poorly developed, floodplain inundation occurs by overbank flow. Therefore, for a given discharge through‐bank and overbank inundation may occur simultaneously. For the Congaree River floodplain, we infer that this dichotomy of inundation processes leads to temporally and spatially complex inundation flow paths for a given river stage. Further, our analyses reveal that the inundation continuum concept should be considered in the context of having vertical, longitudinal, lateral, and temporal components.
This content will become publicly available on December 1, 2025
- Award ID(s):
- 2332169
- PAR ID:
- 10525558
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- npj Natural Hazards
- Volume:
- 1
- Issue:
- 1
- ISSN:
- 2948-2100
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract. Flood-protection levees have been built along rivers and coastlines globally. Current datasets, however, are generally confined to territorial boundaries (national datasets) and are not always easily accessible, posing limitations for hydrologic models and assessments of flood hazard. Here, we bridge this knowledge gap by collecting and standardizing global flood-protection levee data for river deltas into the open-source global river delta levee data environment, openDELvE. In openDELvE, we aggregate levee data from national databases, reports, maps, and satellite imagery. The database identifies the river delta land areas that the levees have been designed to protect. Where data are available, we record the extent and design specifications of the levees themselves (e.g., levee height, crest width, construction material) in a harmonized format. The 1657 polygons of openDELvE contain 19 248 km of levees and 44 733.505 km2 of leveed area. For the 153 deltas included in openDELvE, 17 % of the land area is confined by flood-protection levees. Around 26 % of delta population lives within the 17 % of delta area that is protected, making leveed areas densely populated. openDELvE data can help improve flood exposure assessments, many of which currently do not account for flood-protection levees. We find that current flood hazard assessments that do not include levees may exaggerate the delta flood exposure by 33 % on average, but up to 100 % for some deltas. The openDELvE is made public on an interactive platform (https://www.opendelve.eu/, 1 October 2022), which includes a community-driven revision tool to encourage inclusion of new levee data and continuous improvement and refinement of open-source levee data.more » « less
-
The morphology of river levees and floodplains is an important control on river-floodplain connectivity within a river system under sub-bankfull conditions, and this morphology changes as a river approaches the coast due to backwater influence. Floodplain width can also vary along a river, and floodplain constrictions in the form of bluffs adjacent to the river can influence inundation extent. However, the relative controls of backwater-influenced floodplain topography and bluff topography on river-floodplain connectivity have not been studied. We measure discharge along the lower Trinity River (Texas, USA) during high flow to determine which floodplain features are associated with major river-floodplain flow exchanges. We develop a numerical model representing the transition to backwater-dominated river hydraulics, and quantify downstream changes in levee channelization, inundation, and fluxes along the river-floodplain boundary. We model passive particle transport through the floodplain, and compute residence times as a function of location where particles enter the floodplain. We find that bluff topography controls flow from the floodplain back to the river, whereas levee topography facilitates flow to the floodplain through floodplain channels. Return flow to the river is limited to locations just upstream of bluffs, even under receding flood conditions, whereas outflow locations are numerous and occur all along the river. Residence times for particles entering the floodplain far upstream of bluffs are as much as two orders of magnitude longer than those for particles entering short distances upstream of bluffs. This study can benefit floodplain ecosystem management and restoration plans by informing on the key locations of lateral exchange and variable residence time distributions in river-floodplain systems.
-
null (Ed.)As sea level rises, urban traffic networks in low-lying coastal areas face increasing risks of flood disruptions. Closure of flooded roads causes employee absences and delays, creating cascading impacts to communities. We integrate a traffic model with flood maps that represent potential combinations of storm surges, tides, seasonal cycles, interannual anomalies driven by large-scale climate variability such as the El Niño Southern Oscillation, and sea level rise. When identifying inundated roads, we propose corrections for potential biases arising from model integration. Our results for the San Francisco Bay Area show that employee absences are limited to the homes and workplaces within the areas of inundation, while delays propagate far inland. Communities with limited availability of alternate roads experience long delays irrespective of their proximity to the areas of inundation. We show that metric reach, a measure of road network density, is a better proxy for delays than flood exposure.more » « less
-
Abstract Lowland rivers regularly flood and create complex inundation patterns where energy and matter are exchanged between landscape patches over a dynamic network of surface‐water connections. Scale‐freeness of networks for phenomena in many disciplines have been studied with mixed results. Here we present the first documented example of a (roughly) scale‐free network of surface‐water connections within a river‐floodplain landscape. We accomplish this by simulating 23 inundation maps across the historical range of flows for the Mission River in Texas. We then analyze the topology of the surface‐water connections between the river and two habitat patch types. Results show that surface‐water connectivity is scale‐free for ≥64% of simulated flows (≥70% for flows with floodplain inundation). Moreover, the dynamic surface‐water connections meet five of the six conceptual criteria of scale‐free networks. Our findings indicate that river‐floodplain landscapes are self‐organizing toward scale‐free surface‐water connections among patches that optimizes energy and matter exchange.