skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A pneumatic random-access memory for controlling soft robots
Pneumatically-actuated soft robots have advantages over traditional rigid robots in many applications. In particular, their flexible bodies and gentle air-powered movements make them more suitable for use around humans and other objects that could be injured or damaged by traditional robots. However, existing systems for controlling soft robots currently require dedicated electromechanical hardware (usually solenoid valves) to maintain the actuation state (expanded or contracted) of each independent actuator. When combined with power, computation, and sensing components, this control hardware adds considerable cost, size, and power demands to the robot, thereby limiting the feasibility of soft robots in many important application areas. In this work, we introduce a pneumatic memory that uses air (not electricity) to set and maintain the states of large numbers of soft robotic actuators without dedicated electromechanical hardware. These pneumatic logic circuits use normally-closed microfluidic valves as transistor-like elements; this enables our circuits to support more complex computational functions than those built from normally-open valves. We demonstrate an eight-bit nonvolatile random-access pneumatic memory (RAM) that can maintain the states of multiple actuators, control both individual actuators and multiple actuators simultaneously using a pneumatic version of time division multiplexing (TDM), and set actuators to any intermediate position using a pneumatic version of analog-to-digital conversion. We perform proof-of-concept experimental testing of our pneumatic RAM by using it to control soft robotic hands playing individual notes, chords, and songs on a piano keyboard. By dramatically reducing the amount of hardware required to control multiple independent actuators in pneumatic soft robots, our pneumatic RAM can accelerate the spread of soft robotic technologies to a wide range of important application areas.  more » « less
Award ID(s):
2019362 1351115 1536026 1910878 1353974 1740052 1910087 2046270
PAR ID:
10285123
Author(s) / Creator(s):
; ; ;
Editor(s):
Mattoli, Virgilio
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
7
ISSN:
1932-6203
Page Range / eLocation ID:
e0254524
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Regulation systems for fluid-driven soft robots predominantly consist of inflexible and bulky components. These rigid structures considerably limit the adaptability and mobility of these robots. Soft valves in various forms for fluidic actuators have been developed, primarily fluidically or electrically driven. However, fluidic soft valves require external pressure sources that limit robot locomotion. State-of-the-art electrostatic valves are unable to modulate pressure beyond 3.5 kPa with a sufficient flow rate (>6 mL⋅min −1 ). In this work, we present an electrically powered soft valve for hydraulic actuators with mesoscale channels based on a different class of ultrahigh-power density dynamic dielectric elastomer actuators. The dynamic dielectric elastomer actuators (DEAs) are actuated at 500 Hz or above. These DEAs generate 300% higher blocked force compared with the dynamic DEAs in previous works and their loaded power density reaches 290 W⋅kg −1 at operating conditions. The soft valves are developed with compact (7 mm tall) and lightweight (0.35 g) dynamic DEAs, and they allow effective control of up to 51 kPa of pressure and a 40 mL⋅min −1 flow rate with a response time less than 0.1 s. The valves can also tune flow rates based on their driving voltages. Using the DEA soft valves, we demonstrate control of hydraulic actuators of different volumes and achieve independent control of multiple actuators powered by a single pressure source. This compact and lightweight DEA valve is capable of unprecedented electrical control of hydraulic actuators, showing the potential for future onboard motion control of soft fluid-driven robots. 
    more » « less
  2. In soft devices, complex actuation sequences and precise force control typically require hard electronic valves and microcontrollers. Existing designs for entirely soft pneumatic control systems are capable of either digital or analog operation, but not both, and are limited by speed of actuation, range of pressure, time required for fabrication, or loss of power through pull-down resistors. Using the nonlinear mechanics intrinsic to structures composed of soft materials—in this case, by leveraging membrane inversion and tube kinking—two modular soft components are developed: a piston actuator and a bistable pneumatic switch. These two components combine to create valves capable of analog pressure regulation, simplified digital logic, controlled oscillation, nonvolatile memory storage, linear actuation, and interfacing with human users in both digital and analog formats. Three demonstrations showcase the capabilities of systems constructed from these valves: 1) a wearable glove capable of analog control of a soft artificial robotic hand based on input from a human user’s fingers, 2) a human-controlled cushion matrix designed for use in medical care, and 3) an untethered robot which travels a distance dynamically programmed at the time of operation to retrieve an object. This work illustrates pathways for complementary digital and analog control of soft robots using a unified valve design. 
    more » « less
  3. Pneumatic soft robots have several advantages, including facile fabrication, versatile deformation modes, and safe human–machine interaction. However, pneumatic soft robots typically rely on mechatronics to interact with their environment, which can limit their form factors and reliability. Researchers have considered how to achieve autonomous behaviors using the principles of mechanical computing and physical intelligence. Herein, modular responsive valves that can autonomously regulate airflow within pneumatic soft robots in response to various environmental stimuli, including light, water, and mechanical forces, are described. By combining multiple types of valves, autonomous logic gates and more advanced logical operations can be realized. Finally, it is demonstrated that responsive valves can be integrated with pneumatic soft robots, allowing autonomous morphing and navigation. This framework provides a strategy for creating autonomous pneumatic robots that can respond to multiple stimuli in their environment. 
    more » « less
  4. null (Ed.)
    Textile pneumatic actuators were developed to provide full assistance to lift the arm of a model of an 11-year-old male beyond 120 degrees of shoulder abduction. Two fabrics and a variety of sealing techniques, methods of attachment, and actuator shapes were comparatively evaluated using textile and functional tests. The results identified that both fabrics and one of the three sealing techniques were effective for creating air-tight, functional actuators. Actuators were more effective when the bands attaching them were closer to the axilla. Rectangular and wing-shaped actuators, both lifting the model of an 11-year-old male’s arm above 120 degrees of abduction, were more effective than Y-shaped actuators. Multiple designs and materials may be acceptable for building textile pneumatic actuators to lift the full weight of a child’s arm. Compared to traditional hard robots, soft assistive robots offer key potential benefits related to comfort, aesthetics, weight, bulk, and cost. 
    more » « less
  5. Pneumatic soft robots are typically fabricated by molding, a manual fabrication process that requires skilled labor. Additive manufacturing has the potential to break this limitation and speed up the fabrication process but struggles with consistently producing high-quality prints. We propose a low-cost approach to improve the print quality of desktop fused deposition modeling by adding a webcam to the printer to monitor the printing process and detect and correct defects such as holes or gaps. We demonstrate that our approach improves the air-tightness of printed pneumatic actuators while reducing the need for fine-tuning printing parameters. Our approach presents a new option for robustly fabricating airtight, soft robotic actuators. 
    more » « less