skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local and regional geographic variation in inducible defenses
Abstract Invasive predators can cause substantial evolutionary change in native prey populations. Although invasions by predators typically occur over large scales, their distributions are usually characterized by substantial spatiotemporal heterogeneity that can lead to patchiness in the response of native prey species. Our ability to understand how local variation shapes patterns of inducible defense expression has thus far been limited by insufficient replication of populations within regions. Here, we examined local and regional variation in the inducible defenses of 12 native marine snail (Littorina obtusata) populations within two geographic regions in the Gulf of Maine that are characterized by vastly different contact histories with the invasive predatory green crab (Carcinus maenas). When exposed in the field to waterborne risk cues from the green crab for 90 days, snails expressed plastic increases in shell thickness that reduced their vulnerability to this shell‐crushing predator. Despite significant differences in contact history with this invasive predator, snail populations from both regions produced similar levels of shell thickness and shell thickness plasticity in response to risk cues. Such phenotypic similarity emerged even though there were substantial geographic differences in the shell thickness of juvenile snails at the beginning of the experiment, and we suggest that it may reflect the effects of warming ocean temperatures and countergradient variation. Consistent with plasticity theory, a trend in our results suggests that southern snail populations, which have a longer contact history with the green crab, paid less in the form of reduced tissue mass for thicker shells than northern populations.  more » « less
Award ID(s):
2017626
PAR ID:
10525728
Author(s) / Creator(s):
;
Corporate Creator(s):
Editor(s):
Grosholz, Edwin D
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology
Volume:
105
Issue:
1
ISSN:
0012-9658
Subject(s) / Keyword(s):
Carcinus means, countergradient variation, inducible defenses, invasive species, Littorina obtusata, ocean warming, phenotypic plasticity's, predatory crab, regional and local scales, trade-offs
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dall, Sasha (Ed.)
    Predator-induced changes in prey foraging can influence community dynamics by increasing the abundance of basal resources via a trait-mediated trophic cascade. The strength of these cascades may be altered by eco-evolutionary relationships between predators and prey, but the role of basal resources has received limited attention. We hypothesized that trait-mediated trophic cascade strength may be shaped by selection from trophic levels above and below prey. Field and laboratory experiments used snails (Nucella lapillus) from two regions in the Gulf of Maine (GoM) that vary in basal resource availability (e.g. mussels), seawater temperature, and contact history with the invasive green crab,Carcinus maenas. In field and laboratory experiments,Nucellafrom both regions foraged on mussels in the presence or absence of green crab risk cues. In the field,Nucellafrom the northern GoM, where mussels are scarce, were less responsive to risk cues and more responsive to seawater temperature than southernNucella. In the lab, however, northernNucellaforaged and grew more than southern snails in the presence of risk, but foraging and growth were similar in the absence of risk. We suggest that adaptation to basal resource availability may shape geographical variation in the strength of trait-mediated trophic cascades. 
    more » « less
  2. The impact of invasive predators during the early stages of invasion is often variable in space and time. Such variation is expected to initially favor plasticity in prey defenses, but fixed defenses as invaders become established. Coincident with the range expansion of an invasive predatory crab in the Gulf of Maine, we document rapid changes in shell thickness—a key defense against shell crushing predators—of an intertidal snail. Field experiments, conducted 20 years apart, revealed that temporal shifts in shell thickness were driven by the evolution of increased trait means and erosion of thickness plasticity. The virtual elimination of the trade-off in tissue mass that often accompanies thicker shells is consistent with the evolution of fixed defenses under increasingly certain predation risk. 
    more » « less
  3. Inducible prey defences occur when organisms undergo plastic changes in phenotype to reduce predation risk. When predation pressure varies persistently over space or time, such as when predator and prey co-occur over only part of their biogeographic ranges, prey populations can become locally adapted in their inducible defences. In California estuaries, native Olympia oyster (Ostrea lurida) populations have evolved disparate phenotypic responses to an invasive predator, the Atlantic oyster drill (Urosalpinx cinerea). In this study, oysters from an estuary with drills, and oysters from an estuary without drills, were reared for two generations in a laboratory common garden, and subsequently exposed to cues from Atlantic drills. Comparative proteomics was then used to investigate molecular mechanisms underlying conserved and divergent aspects of their inducible defences. Both populations developed smaller, thicker, and harder shells after drill exposure, and these changes in shell phenotype were associated with upregulation of calcium transport proteins that could influence biomineralization. Inducible defences evolve in part because defended phenotypes incur fitness costs when predation risk is low. Immune proteins were downregulated by both oyster populations after exposure to drills, implying a trade-off between biomineralization and immune function. Following drill exposure, oysters from the population that co-occurs with drills grew smaller shells than oysters inhabiting the estuary not yet invaded by the predator. Variation in the response to drills between populations was associated with isoform-specific protein expression. This trend suggests that a stronger inducible defence response evolved in oysters that co-occur with drills through modification of an existing mechanism. 
    more » « less
  4. null (Ed.)
    Abstract Since 1955 snails of the Euglandina rosea species complex and Platydemus manokwari flatworms were widely introduced in attempted biological control of giant African snails ( Lissachatina fulica ) but have been implicated in the mass extinction of Pacific island snails. We review the histories of the 60 introductions and their impacts on L. fulica and native snails. Since 1993 there have been unofficial releases of Euglandina within island groups. Only three official P. manokwari releases took place, but new populations are being recorded at an increasing rate, probably because of accidental introduction. Claims that these predators controlled L. fulica cannot be substantiated; in some cases pest snail declines coincided with predator arrival but concomitant declines occurred elsewhere in the absence of the predator and the declines in some cases were only temporary. In the Hawaiian Islands, although there had been some earlier declines of native snails, the Euglandina impacts on native snails are clear with rapid decline of many endemic Hawaiian Achatinellinae following predator arrival. In the Society Islands, Partulidae tree snail populations remained stable until Euglandina introduction, when declines were extremely rapid with an exact correspondence between predator arrival and tree snail decline. Platydemus manokwari invasion coincides with native snail declines on some islands, notably the Ogasawara Islands of Japan, and its invasion of Florida has led to mass mortality of Liguus spp. tree snails. We conclude that Euglandina and P. manokwari are not effective biocontrol agents, but do have major negative effects on native snail faunas. These predatory snails and flatworms are generalist predators and as such are not suitable for biological control. 
    more » « less
  5. Cooke, Steve (Ed.)
    Abstract Models of species response to climate change often assume that physiological traits are invariant across populations. Neglecting potential intraspecific variation may overlook the possibility that some populations are more resilient or susceptible than others, creating inaccurate predictions of climate impacts. In addition, phenotypic plasticity can contribute to trait variation and may mediate sensitivity to climate. Quantifying such forms of intraspecific variation can improve our understanding of how climate can affect ecologically important species, such as invasive predators. Here, we quantified thermal performance (tolerance, acclimation capacity, developmental traits) across seven populations of the predatory marine snail (Urosalpinx cinerea) from native Atlantic and non-native Pacific coast populations in the USA. Using common garden experiments, we assessed the effects of source population and developmental acclimation on thermal tolerance and developmental traits of F1 snails. We then estimated climate sensitivity by calculating warming tolerance (thermal tolerance − habitat temperature), using field environmental data. We report that low-latitude populations had greater thermal tolerance than their high latitude counterparts. However, these same low-latitude populations exhibited decreased thermal tolerance when exposed to environmentally realistic higher acclimation temperatures. Low-latitude native populations had the greatest climate sensitivity (habitat temperatures near thermal limits). In contrast, invasive Pacific snails had the lowest climate sensitivity, suggesting that these populations are likely to persist and drive negative impacts on native biodiversity. Developmental rate significantly increased in embryos sourced from populations with greater habitat temperature but had variable effects on clutch size and hatching success. Thus, warming can produce widely divergent responses within the same species, resulting in enhanced impacts in the non-native range and extirpation in the native range. Broadly, our results highlight how intraspecific variation can alter management decisions, as this may clarify whether management efforts should be focused on many or only a few populations. 
    more » « less