skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Fairness and Incentive Compatibility via Percentage Fees
We study incentive-compatible mechanisms that maximize the Nash Social Welfare. Since traditional incentive-compatible mechanisms cannot maximize the Nash Social Welfare even approximately, we propose changing the traditional model. Inspired by a widely used charging method (e.g., royalties, a lawyer that charges some percentage of possible future compensation), we suggest charging the players some percentage of their value of the outcome. We call this model the percentage fee model. We show that there is a mechanism that maximizes exactly the Nash Social Welfare in every setting with non-negative valuations. Moreover, we prove an analog of Roberts theorem that essentially says that if the valuations are non-negative, then the only implementable social choice functions are those that maximize weighted variants of the Nash Social Welfare. We develop polynomial time incentive compatible approximation algorithms for the Nash Social Welfare with subadditive valuations and prove some hardness results.  more » « less
Award ID(s):
2127781
PAR ID:
10525755
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Format(s):
Medium: X
Location:
London, United Kingdom
Sponsoring Org:
National Science Foundation
More Like this
  1. Leyton-Brown, Kevin; Samuelson, Larry; Hartline, Jason D (Ed.)
    We study incentive-compatible mechanisms that maximize the Nash Social Welfare. Since traditional incentivecompatible mechanisms cannot maximize the Nash Social Welfare even approximately, we propose changing the traditional model. Inspired by a widely used charging method (e.g., royalties, a lawyer that charges some percentage of possible future compensation), we suggest charging the players some percentage of their value of the outcome. We call this model the percentage fee model. We show that there is a mechanism that maximizes exactly the Nash Social Welfare in every setting with non-negative valuations. Moreover, we prove an analog of Roberts theorem that essentially says that if the valuations are non-negative, then the only implementable social choice functions are those that maximize weighted variants of the Nash Social Welfare. We develop polynomial time incentive compatible approximation algorithms for the Nash Social Welfare with subadditive valuations and prove some hardness results. 
    more » « less
  2. The Nash social welfare problem asks for an allocation of indivisible items to agents in order to maximize the geometric mean of agents' valuations. We give an overview of the constant-factor approximation algorithm for the problem when agents have Rado valuations [Garg et al. 2021]. Rado valuations are a common generalization of the assignment (OXS) valuations and weighted matroid rank functions. Our approach also gives the first constant-factor approximation algorithm for the asymmetric Nash social welfare problem under the same valuations, provided that the maximum ratio between the weights is bounded by a constant. 
    more » « less
  3. Bonneau, Joseph; Weinberg, S Matthew (Ed.)
    In a typical decentralized autonomous organization (DAO), people organize themselves into a group that is programmatically managed. DAOs can act as bidders in auctions (with ConstitutionDAO being one notable example), with a DAO’s bid typically treated by the auctioneer as if it had been submitted by an individual, without regard to any details of the internal DAO dynamics. The goal of this paper is to study auctions in which the bidders are DAOs. More precisely, we consider the design of two-level auctions in which the "participants" are groups of bidders rather than individuals. Bidders form DAOs to pool resources, but must then also negotiate the terms by which the DAO’s winnings are shared. We model the outcome of a DAO’s negotiations through an aggregation function (which aggregates DAO members' bids into a single group bid) and a budget-balanced cost-sharing mechanism (that determines DAO members' access to the DAO’s allocation and distributes the aggregate payment demanded from the DAO to its members). DAOs' bids are processed by a direct-revelation mechanism that has no knowledge of the DAO structure (and thus treats each DAO as an individual). Within this framework, we pursue two-level mechanisms that are incentive-compatible (with truthful bidding a dominant strategy for each member of each DAO) and approximately welfare-optimal. We prove that, even in the case of a single-item auction, the DAO dynamics hidden from the outer mechanism preclude incentive-compatible welfare maximization: No matter what the outer mechanism and the cost-sharing mechanisms used by DAOs, the welfare of the resulting two-level mechanism can be a ≈ ln n factor less than the optimal welfare (in the worst case over DAOs and valuation profiles). We complement this lower bound with a natural two-level mechanism that achieves a matching approximate welfare guarantee. This upper bound also extends to multi-item auctions in which individuals have additive valuations. Finally, we show that our positive results cannot be extended much further: Even in multi-item settings in which bidders have unit-demand valuations, truthful two-level mechanisms form a highly restricted class and as a consequence cannot guarantee any non-trivial approximation of the maximum social welfare. 
    more » « less
  4. Mohar, Bojan; Shinkar, Igor; O'Donnell, Ryan (Ed.)
    We study the bilateral trade problem where a seller owns a single indivisible item, and a potential buyer seeks to purchase it. Previous mechanisms for this problem only considered the case where the values of the buyer and the seller are drawn from independent distributions. In contrast, this paper studies bilateral trade mechanisms when the values are drawn from a joint distribution. We prove that the buyer-offering mechanism guarantees an approximation ratio of e/e−1 ≈ 1.582 to the social welfare even if the values are drawn from a joint distribution. The buyer-offering mechanism is Bayesian incentive compatible, but the seller has a dominant strategy. We prove the buyer-offering mechanism is optimal in the sense that no Bayesian mechanism where one of the players has a dominant strategy can obtain an approximation ratio better than e/e−1. We also show that no mechanism in which both sides have a dominant strategy can provide any constant approximation to the social welfare when the values are drawn from a joint distribution. Finally, we prove some impossibility results on the power of general Bayesian incentive compatible mechanisms. In particular, we show that no deterministic Bayesian incentive-compatible mechanism can provide an approximation ratio better than 1+ln2/2≈ 1.346. 
    more » « less
  5. We study fair resource allocation with strategic agents. It is well-known that, across multiple fundamental problems in this domain, truthfulness and fairness are incompatible. For example, when allocating indivisible goods, no truthful and deterministic mechanism can guarantee envy-freeness up to one item (EF1), even for two agents with additive valuations. Or, in cake-cutting, no truthful and deterministic mechanism always outputs a proportional allocation, even for two agents with piecewise constant valuations. Our work stems from the observation that, in the context of fair division, truthfulness is used as a synonym for Dominant Strategy Incentive Compatibility (DSIC), requiring that an agent prefers reporting the truth, no matter what other agents report.In this paper, we instead focus on Bayesian Incentive Compatible (BIC) mechanisms, requiring that agents are better off reporting the truth in expectation over other agents' reports. We prove that, when agents know a bit less about each other, a lot more is possible: using BIC mechanisms we can achieve fairness notions that are unattainable by DSIC mechanisms in both the fundamental problems of allocation of indivisible goods and cake-cutting. We prove that this is the case even for an arbitrary number of agents, as long as the agents' priors about each others' types satisfy a neutrality condition. Notably, for the case of indivisible goods, we significantly strengthen the state-of-the-art negative result for efficient DSIC mechanisms, while also highlighting the limitations of BIC mechanisms, by showing that a very general class of welfare objectives is incompatible with Bayesian Incentive Compatibility. Combined, these results give a near-complete picture of the power and limitations of BIC and DSIC mechanisms for the problem of allocating indivisible goods. 
    more » « less