skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2127781

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mohar, Bojan; Shinkar, Igor; O'Donnell, Ryan (Ed.)
    We study the bilateral trade problem where a seller owns a single indivisible item, and a potential buyer seeks to purchase it. Previous mechanisms for this problem only considered the case where the values of the buyer and the seller are drawn from independent distributions. In contrast, this paper studies bilateral trade mechanisms when the values are drawn from a joint distribution. We prove that the buyer-offering mechanism guarantees an approximation ratio of e/e−1 ≈ 1.582 to the social welfare even if the values are drawn from a joint distribution. The buyer-offering mechanism is Bayesian incentive compatible, but the seller has a dominant strategy. We prove the buyer-offering mechanism is optimal in the sense that no Bayesian mechanism where one of the players has a dominant strategy can obtain an approximation ratio better than e/e−1. We also show that no mechanism in which both sides have a dominant strategy can provide any constant approximation to the social welfare when the values are drawn from a joint distribution. Finally, we prove some impossibility results on the power of general Bayesian incentive compatible mechanisms. In particular, we show that no deterministic Bayesian incentive-compatible mechanism can provide an approximation ratio better than 1+ln2/2≈ 1.346. 
    more » « less
  2. Mohar, Bojan; Shinkar, Igor; O'Donnell, Ryan (Ed.)
    We present a constant-factor approximation algorithm for the Nash Social Welfare (NSW) maximization problem with subadditive valuations accessible via demand queries. More generally, we propose a framework for NSW optimization which assumes two subroutines which (1) solve a configuration-type LP under certain additional conditions, and (2) round the fractional solution with respect to utilitarian social welfare. In particular, a constant-factor approximation for submodular valuations with value queries can also be derived from our framework. 
    more » « less
  3. Mohar, Bojan; Shinkar, Igor; O'Donnell, Ryan (Ed.)
    We present a constant-factor approximation algorithm for the Nash Social Welfare (NSW) maximization problem with subadditive valuations accessible via demand queries. More generally, we propose a framework for NSW optimization which assumes two subroutines that (1) solve a conguration-type LP under certain additional conditions, and (2) round the fractional solution with respect to utilitarian social welfare. In particular, a constant-factor approximation for submodular valuations with value queries can also be derived from our framework. 
    more » « less
  4. Leyton-Brown, Kevin; Samuelson, Larry; Hartline, Jason D (Ed.)
    We study incentive-compatible mechanisms that maximize the Nash Social Welfare. Since traditional incentivecompatible mechanisms cannot maximize the Nash Social Welfare even approximately, we propose changing the traditional model. Inspired by a widely used charging method (e.g., royalties, a lawyer that charges some percentage of possible future compensation), we suggest charging the players some percentage of their value of the outcome. We call this model the percentage fee model. We show that there is a mechanism that maximizes exactly the Nash Social Welfare in every setting with non-negative valuations. Moreover, we prove an analog of Roberts theorem that essentially says that if the valuations are non-negative, then the only implementable social choice functions are those that maximize weighted variants of the Nash Social Welfare. We develop polynomial time incentive compatible approximation algorithms for the Nash Social Welfare with subadditive valuations and prove some hardness results. 
    more » « less
  5. We study incentive-compatible mechanisms that maximize the Nash Social Welfare. Since traditional incentive-compatible mechanisms cannot maximize the Nash Social Welfare even approximately, we propose changing the traditional model. Inspired by a widely used charging method (e.g., royalties, a lawyer that charges some percentage of possible future compensation), we suggest charging the players some percentage of their value of the outcome. We call this model the percentage fee model. We show that there is a mechanism that maximizes exactly the Nash Social Welfare in every setting with non-negative valuations. Moreover, we prove an analog of Roberts theorem that essentially says that if the valuations are non-negative, then the only implementable social choice functions are those that maximize weighted variants of the Nash Social Welfare. We develop polynomial time incentive compatible approximation algorithms for the Nash Social Welfare with subadditive valuations and prove some hardness results. 
    more » « less
  6. Stefano Leonardi (Ed.)
    We study the communication complexity of dominant strategy implementations of combinatorial auctions. We start with two domains that are generally considered “easy”: multi-unit auctions with decreasing marginal values and combinatorial auctions with gross substitutes valuations. For both domains we have fast algorithms that find the welfare-maximizing allocation with communication complexity that is poly-logarithmic in the input size. This immediately implies that welfare maximization can be achieved in ex-post equilibrium with no significant communication cost, by using VCG payments. In contrast, we show that in both domains the communication complexity of any dominant strategy implementation that achieves the optimal welfare is polynomial in the input size. We then move on to studying the approximation ratios achievable by dominant strategy mechanisms. For multi-unit auctions with decreasing marginal values, we provide a dominant-strategy communication FPTAS. For combinatorial auctions with general valuations, we show that there is no dominant strategy mechanism that achieves an approximation ratio better than m1−є that uses poly(m,n) bits of communication, where m is the number of items and n is the number of bidders. In contrast, a randomized dominant strategy mechanism that achieves an O(√m) approximation with poly(m,n) communication is known. This proves the first gap between computationally efficient deterministic dominant strategy mechanisms and randomized ones. En route, we answer an open question on the communication cost of implementing dominant strategy mechanisms for more than two players, and also solve some open problems in the area of simultaneous combinatorial auctions. 
    more » « less
  7. Nisheeth K. Vishnoi (Ed.)
    We present a 380-approximation algorithm for the Nash Social Welfare problem with submodular valuations. Our algorithm builds on and extends a recent constant-factor approximation for Rado valuations [15]. 
    more » « less
  8. Naor, Joseph; Buchbinder, Niv (Ed.)
    We consider the bilateral trade problem, in which two agents trade a single indivisible item. It is known that the only dominant-strategy truthful mechanism is the fixed-price mechanism: given commonly known distributions of the buyer's value B and the seller's value S, a price p is offered to both agents and trade occurs if S ≤ p ≤ B. The objective is to maximize either expected welfare or expected gains from trade . We improve the approximation ratios for several welfare maximization variants of this problem. When the agents' distributions are identical, we show that the optimal approximation ratio for welfare is . With just one prior sample from the common distribution, we show that a 3/4-approximation to welfare is achievable. When agents' distributions are not required to be identical, we show that a previously best-known (1–1/e)-approximation can be strictly improved, but 1–1/e is optimal if only the seller's distribution is known. 
    more » « less