skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Helium metastable density determination in the COST reference source by absolutely calibrated optical emission spectroscopy
Helium metastable densities in the COST Reference Microplasma Jet are estimated for a variety of He/N2 admixtures and dissipated powers by applying a collisional-radiative model to absolutely calibrated optical emission spectroscopy measurements. This is accomplished by delineating the excitation mechanisms that result in the N2(C–B) and N2+(B–X) emission bands, the latter of which is strongly coupled to the presence of helium metastables. A number of other plasma parameters are established and discussed for each operating condition including the electron energy distribution function, reduced electric field, rate constants, and electron density. With these parameters, the reaction rates for the primary ionization pathways are also calculated, emphasizing the importance of helium metastables for discharge sustainment. Good agreement with the existing literature is found for most plasma parameters and for helium metastable densities, in particular. A clear [N2]−1 relationship between the nitrogen concentration and density of helium metastables is demonstrated, as has been identified in previous studies in analogous atmospheric pressure plasma jets. This validates the efficacy of this optical technique for determining helium metastable densities and establishes it as a viable, and in many cases, more accessible alternative to other means of quantifying helium metastables in low-temperature plasmas.  more » « less
Award ID(s):
2308857
PAR ID:
10525805
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
136
Issue:
4
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The active-particle number density is a key parameter for plasma material processing, space propulsion, and plasma-assisted combustion. The traditional actinometry method focuses on measuring the density of the atoms in the ground state, but there is a lack of an effective optical emission spectroscopy method to measure intra-shell excited-state densities. The latter atoms have chemical selectivity and higher energy, and they can easily change the material morphology as well as the ionization and combustion paths. In this work, we present a novel state-resolved actinometry (SRA) method, supported by a krypton line-ratio method for the electron temperature and density, to measure the number densities of nitrogen atoms in the ground and intra-shell excited states. The SRA method is based on a collisional-radiative model, considering the kinetics of atomic nitrogen and krypton including their excited states. The densities measured by our method are compared with those obtained from a dissociative model in a miniature electron cyclotron resonance (ECR) plasma source. Furthermore, the saturation effect, in which the electron density remains constant due to the microwave propagation in an ECR plasma once the power reaches a certain value, is used to verify the electron density measured by the line-ratio method. An ionization balance model is also presented to examine the measured electron temperature. All the values obtained with the different methods are in good agreement with each other, and hence a set of verified rate coefficient data used in our method can be provided. A novel concept, the ‘excited-state system’, is presented to quickly build an optical diagnostic method based on the analysis of quantum number propensity and selection rules. 
    more » « less
  2. Guharay, S; Wada, M (Ed.)
    At or near atmospheric pressure, overvolted gas breakdown results in a streamer formation. In many applications of non-thermal plasma where efficient excited species generation is critical, the streamers are quenched to prevent it from reaching the arc phase. This can be achieved by repetitive nano second pulsing or dielectric barrier discharges were the dielectric charging quenches the arc formation. In such discharges, the plasma characteristics such as electron and ion densities and the production of excited species is determined by the streamer properties. Over the past five decades, a vast amount of experimental and computational work has been accumulated to establish a well-accepted theory of streamer formation and propagation. In this article we discuss the fluid models for streamers and quantify some macroscopic properties which can inform specific applications. We discuss in detail the fluid equations needed to model streamers and several schemes of parametrization of the transport and electron collisional processes. From an application point of view, the steamer simulations are used to quantify the excited species production by electron impact. This information is used to predict the specific outcomes via the plasma chemical conversion pathways. We present results of streamer discharges for three applications which are of technological importance to illustrate this approach: Plasma-assisted combustion, remediation of toxic gases, and plasma medicine. For plasma-assisted combustion the results of hydrogen ignition are discussed since non-hydrocarbon-based fuels such as hydrogen and ammonia are potential fuel candidates to reduce greenhouse gases. For the remediation of toxic gases, we discuss the removal of SOX/NOx from flue gas. Plasma medicine is a relatively new field and repetitive nano-second pulsed discharges in a helium gas carrier shows promise as a reactive plasma source for treating biological material. We discuss the helium metastable production in a streamer discharge since this species leads to the production of OH radicals which plays an important role. 
    more » « less
  3. Abstract In an atmospheric DC glow discharge with liquid anode, the plasma attachment under certain conditions self-organize into coherent patterns at the anode. Optical emission spectroscopy revealed that attachment emission consists primarily of the second positive system of nitrogen N2(C-B) whose excitation energy is low and sensitive to the change of electron energy distribution. Besides the electrons, negative ions can also accumulate in the anode sheath and affect the local space charge. It has been conjectured that these negative ions play a role in pattern formation at the anode surface. In this work, the role of oxygen negative ions was explored. It was found that the establishment of anode patterns requires at least a 7 % volume fraction of oxygen in the ambient gas. Results showed that at least in this work, O2- is the dominant negative ion species and has a density ~10^13 cm^-3. While the presence of oxygen appears crucial to pattern formation, this study indicated that the mere presence of the negative ions itself was not sufficient for pattern formation, suggesting a more complex mechanism involving electronegative species must be present. In fact, it was found that even when as many as 67 % of negative ions in the plasma were detached, no obvious geometry changes were observed in the self-organized pattern. 
    more » « less
  4. null (Ed.)
    The PK-4 system is a micro-gravity dusty plasma experiment currently in operation on-board the International Space Station. The experiment utilizes a long DC discharge in neon or argon gases. We apply our 2D particle-in-cell with Monte Carlo collisions discharge simulation to compute local plasma parameters that serve as input data for future dust dynamics models. The simulation includes electrons, Ne+ ions, and Nem metastable atoms in neon gas and their collisions at solid surfaces including secondary electron emission and glass wall charging. On the time scale of the on-board optical imaging, the positive column appears stable and homogeneous. On the other hand, our simulations show that on microsecond time scales the positive column is highly inhomogeneous: ionization waves with phase velocities in the range between 500 m s−1 and 1200 m s−1 dominate the structure. In these waves, the electric field and charged particle densities can reach amplitudes up to 10 times of their average value. Our experiments on ground-based PK-4 replica systems fully support the numerical findings. In the experiment, the direction of the DC current can be alternated, which has been found to favor dust particle chain formation. We discuss possible mechanisms for how the highly oscillatory plasma environment contributes to the dust particle chain formation. 
    more » « less
  5. null (Ed.)
    Dielectric barrier discharges are receiving increasing attention as sampling/ionization sources for ambient mass spectrometry. Nevertheless, the underlying mechanisms are not completely understood, particularly when the plasma plume is exposed to a sample surface. Herein, an atmospheric pressure helium micro-dielectric barrier discharge (μDBD), flowing into open-air and onto a sample surface (floating Cu or LDPE), is studied via optical emission spectroscopy (OES) with radial information extracted through Abel's inversion. Radially resolved optical emission profiles along the axis are shown to shift with respect to the line-of-sight counterparts, for some species. The OES images, as well as vibrational and rotational temperature maps, indicate the energy transfers mainly via Penning ionization of N 2 with He metastables to produce N 2 + , as the plasma plume exits the capillary into open air, while charge transfer with He 2 + is dominant further downstream, as well as toward the periphery of the plume. In addition, the sample surface is shown to play an important role in the energy transfer mechanisms. For the LDPE sample, the spatial distribution sequence of excited species is similar to the free-flowing counterpart but disappears into the surface, which indicates that excited N 2 further downstream/outer periphery is produced from electron recombination with N 2 + . On the other hand, the presence of the floating Cu sample results in an intensity peak at the plasma/surface interface for most species. We propose that the temporal evolution of the half-cycle dynamics have a great effect, where the resulting higher electron temperature and density towards the surface of metallic samples favors electron impact excitation. Furthermore, profilometry of the resulting craters in the floating Cu samples revealed a close correlation between their diameter and the width of the N 2 + emission. 
    more » « less