This paper considers a set of multiple independent control systems that are each connected over a nonstationary wireless channel. The goal is to maximize control performance over all the systems through the allocation of transmitting power within a fixed budget. This can be formulated as a constrained optimization problem examined using Lagrangian duality. By taking samples of the unknown wireless channel at every time instance, the resulting problem takes on the form of empirical risk minimization, a well-studied problem in machine learning. Due to the nonstationarity of wireless channels, optimal allocations must be continuously learned and updated as the channel evolves. The quadratic convergence property of Newton's method motivates its use in learning approximately optimal power allocation policies over the sampled dual function as the channel evolves over time. Conditions are established under which Newton's method learns approximate solutions with a single update, and the subsequent suboptimality of the control problem is further characterized. Numerical simulations illustrate the near-optimal performance of the method and resulting stability on a wireless control problem.
more »
« less
AoI-optimal Scheduling for Arbitrary K-channel Update-Through-Queue Systems
This work generalizes the Age-of-Information (AoI) minimization problem of update-through-queue systems such that in addition to deciding the waiting time, the sender also chooses over which “channel” each update packet will be served. Different channels have different costs, delays, and quality characteristics that reflect the scheduler’s selections of routing, communications, and update modes. Instead of considering only two channels with restricted parameters as in the existing works, this work studies the general K-channel problem with arbitrary parameters. The results show that both the optimal waiting time and the optimal channel-selection policies admit an elegant water-filling structure, and can be efficiently computed by the proposed low-complexity fixed-point-based numerical method.
more »
« less
- PAR ID:
- 10526137
- Publisher / Repository:
- IEEE
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The notion of timely status updating is investigated in the context of cloud computing. Measurements of a time-varying process of interest are acquired by a sensor node, and uploaded to a cloud server to undergo some required computations. These computations have random service times that are independent and identically distributed across different uploads. After the computations are done, the results are delivered to a monitor, constituting an update. The goal is to keep the monitor continuously fed with fresh updates over time, which is assessed by an age-of-information(AoI) metric. A scheduler is employed to optimize the measurement acquisition times. Following an update, an idle waiting period may be imposed by the scheduler before acquiring a new measurement. The scheduler also has the capability to preempt a measurement in progress if its service time grows above a certain cutoff time, and upload a fresher measurement in its place. Focusing on stationary deterministic policies, in which waiting times are deterministic functions of the instantaneous AoI and the cutoff time is fixed for all uploads, it is shown that the optimal waiting policy that minimizes the long term average AoI has a threshold structure, in which a new measurement is uploaded following an update only if the AoI grows above a certain threshold that is a function of the service time distribution and the cutoff time. The optimal cutoff is then found for standard and shifted exponential service times. While it has been previously reported that waiting before updating can be beneficial for AoI, it is shown in this work that preemption of late updates can be even more beneficial.more » « less
-
null (Ed.)In this paper, we study the problem of minimizing the age of information when a source can transmit status updates over two heterogeneous channels. Our work is motivated by recent developments in 5G mmWave technology, where transmissions may occur over an unreliable but fast (e.g., mmWave) channel or a slow reliable (e.g., sub-6GHz) channel. The unreliable channel is modeled as a time-correlated Gilbert-Elliot channel, where information can be transmitted at a high rate when the channel is in the "ON" state. The reliable channel provides a deterministic but lower data rate. The scheduling strategy determines the channel to be used for transmission with the aim to minimize the time-average age of information (AoI). The optimal scheduling problem is formulated as a Markov Decision Process (MDP), which in our setting poses some significant challenges because e.g., supermodularity does not hold for part of the state space. We show that there exists a multi-dimensional threshold-based scheduling policy that is optimal for minimizing the age. A low-complexity bisection algorithm is further devised to compute the optimal thresholds. Numerical simulations are provided to compare different scheduling policies.more » « less
-
Federated learning (FL) is a distributed machine learning technique to address the data privacy issue. Participant selection is critical to determine the latency of the training process in a heterogeneous FL architecture, where users with different hardware setups and wireless channel conditions communicate with their base station to participate in the FL training process. Many solutions have been designed to consider computational and uploading latency of different users to select suitable participants such that the straggler problem can be avoided. However, none of these solutions consider the waiting time of a participant, which refers to the latency of a participant waiting for the wireless channel to be available, and the waiting time could significantly affect the latency of the training process, especially when a huge number of participants are involved in the training process and share the wireless channel in the time-division duplexing manner to upload their local FL models. In this paper, we consider not only the computational and uploading latency but also the waiting time (which is estimated based on an M/G/1 queueing model) of a participant to select suitable participants. We formulate an optimization problem to maximize the number of selected participants, who can upload their local models before the deadline in a global iteration. The Latency awarE pARticipant selectioN (LEARN) algorithm is proposed to solve the problem and the performance of LEARN is validated via simulations.more » « less
-
We consider the optimal link rate selection problem in time-varying wireless channels with unknown channel statistics. The aim of optimal link rate selection is to transmit at the optimal rate at each time slot in order to maximize the expected throughput of the wireless channel/link or equivalently minimize the expected regret. Lack of information about channel state or channel statistics necessitates the use of online/sequential learning algorithms to determine the optimal rate. We present an algorithm called CoTS - Constrained Thompson sampling algorithm which improves upon the current state-of-the-art, is fast and is also general in the sense that it can handle several different constraints in the problem with the same algorithm. We also prove an asymptotic lower bound on the expected regret and a high probability large-horizon upper bound on the regret, which show that the regret grows logarithmically with time in an order sense. We also provide numerical results which establish that CoTS significantly outperforms the current state-of-the-art algorithms.more » « less
An official website of the United States government

