skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical Techniques for Improving Simulations of Tropical Cyclones
This is the PhD dissertation of Yassine Tissaoui successfully defended on July 9, 2024 at NJIT in mechanical engineering. The co-main advisors for the dissertation are Simone Marras (NJIT) and Stephen Guimond (Hampton University). The increasing frequency and intensity of tropical cyclones (TCs) due to climate change pose significant challenges for forecasting and mitigating their impacts. Despite advancements, accurately predicting TC rapid intensification (RI) remains a challenge. Large eddy simulation (LES) allows for explicitly resolving the large eddies involved in TC turbulence, thus providing an avenue for studying the mechanisms behind their intensification and RI. LES of a full tropical cyclone is very computationally expensive and its accuracy will depend on both explicit and implicit dissipation within an atmospheric model. This dissertation presents two novel numerical methodologies with the potential to improve the efficiency of tropical cyclone LES in the future. The first is a pioneering non-column based implementation of the Kessler warm rain microphysics parametrization, a method which would allow for the use of three-dimensional (3D) adaptive mesh refinement (AMR) in the simulation of moist tropical cyclones. The second is an implementation of Laguerre-Legendre semi-infinite elements for use in the damping layers of atmospheric models, a method which was shown to be capable of improving the efficiency of benchmark atmospheric simulations. Finally, the dissertation presents a study of two-dimensional (2D) AMR applied to simulations of a rapidly intensifying dry tropical cyclone and shows that AMR is able to accurately reproduce the results of simulations using static grids while demonstrating considerable cost savings.  more » « less
Award ID(s):
2426563
PAR ID:
10526427
Author(s) / Creator(s):
Publisher / Repository:
New Jersey Institute of Technology
Date Published:
Format(s):
Medium: X
Institution:
New Jersey Institute of Technology
Sponsoring Org:
National Science Foundation
More Like this
  1. Regarded as one of the most dangerous types of natural disaster, tropical cyclones threaten the life and health of human beings and often cause enormous economic loss. However, intensity forecasting of tropical cyclones, especially rapid intensification forecasting, remains a scientific challenge due to limited understanding regarding the intensity change process. We propose an automatic knowledge discovery framework to identify potential spatiotemporal precursors to tropical cyclone rapid intensification from a set of tropical cyclone environmental fields. Specifically, this framework includes (1) formulating RI and non-RI composite environmental fields from historical tropical cyclones using NASA MERRA2 data; (2) utilizing the shared nearest neighbor-based clustering algorithm to detect regions representing relatively homogeneous behavior around tropical cyclone centers; (3) determining candidate precursors from significantly different regions in RI and non-RI groups using a spatiotemporal statistical method; and (4) comparing candidates to existing predictors to select potential precursors. The proposed knowledge discovery framework is applied separately to different factors, including 200 hPa zonal wind, 850–700 hPa relative humidity, and 850–200 hPa vertical shear, to detect potential precursors. Compared to the existing predictors manually labeled, i.e., U200 and U20C, RHLO, and SHRD in the Statistical Hurricane Intensity Prediction Scheme, our automatically discovered precursors have a comparable or better capability for estimating the probability of rapid intensification. 
    more » « less
  2. Abstract Understanding physical processes leading to rapid intensification (RI) of tropical cyclones (TCs) under environmental vertical wind shear is key to improving TC intensity forecasts. This study analyzes the thermodynamic processes that help saturate the TC inner core before RI onset using a column‐integrated moist static energy (MSE) framework. Results indicate that the nearly saturated inner core in the lower‐middle troposphere is achieved by an increase in the column‐integrated MSE, as column water vapor accumulates while the mean column temperature cools. The sign of the column‐integrated MSE tendency depends on the competition between surface enthalpy fluxes, radiation, and vertical wind shear‐induced ventilation effect. The reduction of ventilation above the boundary layer due to vertical alignment is crucial to accumulate the energy within the inner core region. A comparison of the RI simulation with a null simulation further highlights the impact of vortex structure on the thermodynamic state adjustment and TC intensification. 
    more » « less
  3. This study explores the spatial and temporal changes in tropical cyclone (TC) thermodynamic and dynamic structures before, near, and during rapid intensification (RI) under different vertical wind shear conditions through four sets of convection-permitting ensemble simulations. A composite analysis of TC structural evolution is performed by matching the RI onset time of each member. Without background flow, the axisymmetric TC undergoes a gradual strengthening of the inner-core vorticity and warm core throughout the simulation. In the presence of moderate environmental shear (5–6 m s−1), both the location and magnitude of the asymmetries in boundary layer radial flow, relative humidity, and vertical motion evolve with the tilt vector throughout the simulation. A budget analysis indicates that tilting is crucial to maintaining the midlevel vortex while stretching and vertical advection are responsible for the upper-level vorticity generation before RI when strong asymmetries arise. Two warm anomalies are observed before the RI onset when the vortex column is tilted. When approaching the RI onset, these two warm anomalies gradually merge into one. Overall, the most symmetric vortex structure is found near the RI onset. Moderately sheared TCs experience an adjustment period from a highly asymmetric structure with updrafts concentrated at the down-tilt side before RI to a more axisymmetric structure during RI as the eyewall updrafts develop. This adjustment period near the RI onset, however, is found to be the least active period for deep convection. TC development under a smaller environmental shear (2.5 m s−1) condition displays an intermediate evolution between ensemble experiments with no background flow and with moderate shear (5–6 m s−1). 
    more » « less
  4. Abstract The phenomenon that rapid contraction (RC) of the radius of maximum wind (RMW) could precede rapid intensification (RI) in tropical cyclones (TCs) has been found in several previous studies, but it is still unclear how frequently and to what extent RC precedes RI in rapidly intensifying and contracting TCs in observations. In this study, the statistical relationship between RMW RC and TC RI is examined based on the extended best track dataset for the North Atlantic and eastern North Pacific during 1999–2019. Results show that for more than ∼65% of available TCs, the time of the peak contraction rate precedes the time of the peak intensification rate, on average, by ∼10–15 h. With the quantitatively defined RC and RI, results show that ∼50% TCs with RC experience RI, and TCs with larger intensity and smaller RMW and embedded in more favorable environmental conditions tend to experience RI more readily following an RC. Among those TCs with RC and RI, more than ∼65% involve the onset of RC preceding the onset of RI, on average, by ∼15–25 h. The preceding time tends to be longer with lower TC intensity and larger RMW and shows weak correlations with environmental conditions. The qualitative results are insensitive to the time interval for the calculation of intensification/contraction rates and the definition of RI. The results from this study can improve our understanding of TC structure and intensity changes. 
    more » « less
  5. The connection relating upper-ocean salinity stratification in the form of oceanic barrier layers to tropical cyclone (TC) intensification is investigated in this study. Previous works disagree on whether ocean salinity is a negligible factor on TC intensification. Relationships derived in many of these studies are based on observations, which can be sparse or incomplete, or uncoupled models, which neglect air–sea feedbacks. Here, idealized ensemble simulations of TCs performed using the Weather Research and Forecasting (WRF) Model coupled to the 3D Price–Weller–Pinkel (PWP) ocean model facilitate examination of the TC–upper-ocean system in a controlled, high-resolution, mesoscale environment. Idealized vertical ocean profiles are modeled after barrier layer profiles of the Amazon–Orinoco river plume region, where barrier layers are defined as vertical salinity gradients between the mixed and isothermal layer depths. Our results reveal that for TCs of category 1 hurricane strength or greater, thick (24–30 m) barrier layers may favor further intensification by 6%–15% when averaging across ensemble members. Conversely, weaker cyclones are hindered by thick barrier layers. Reduced sea surface temperature cooling below the TC inner core is the primary reason for additional intensification. Sensitivity tests of the results to storm translation speed, initial oceanic mixed layer temperature, and atmospheric vertical wind shear provide a more comprehensive analysis. Last, it is shown that the ensemble mean intensity results are similar when using a 3D or 1D version of PWP. 
    more » « less