skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Octopus: In-Network Content Adaptation to Control Congestion on 5G Links
It is challenging to meet the bandwidth and latency requirements of interactive real-time applications (e.g., virtual reality, cloud gaming, etc.) on time-varying 5G cellular links. Today’s feedback-based congestion controllers try to match the sending rate at the endhost with the estimated network capacity. However, such controllers cannot precisely estimate the cellular link capacity that changes at timescales smaller than the feedback delay. We instead propose a different approach for controlling congestion on 5G links. We send real-time data streams using an imprecise controller (that errs on the side of overestimating network capacity) to ensure high throughput, and then adapt the transmitted content by dropping appropriate packets in the cellular base stations to match the actual capacity and minimize delay. We build a system called Octopus to realize this approach. Octopus provides parameterized primitives that applications at the endhost can configure differently to express different content adaptation policies. Octopus transport encodes the corresponding app-specified parameters in packet header fields, which the basestation logic can parse to execute the desired dropping behavior. Our evaluation shows how real-time applications involving standard and volumetric videos can be designed to exploit Octopus, and achieve 1.5–18× better performance than state-of-the-art schemes.  more » « less
Award ID(s):
2217144
PAR ID:
10526813
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE/ACM
Date Published:
Journal Name:
IEEEACM Symposium on Edge Computing
ISSN:
2837-4827
ISBN:
979-8-4007-0123-8
Format(s):
Medium: X
Location:
Wilmington, DE, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. It is challenging to meet the bandwidth and latency requirements of interactive real-time applications (e.g., virtual reality, cloud gam- ing, etc.) on time-varying 5G cellular links. Today’s feedback-based congestion controllers try to match the sending rate at the endhost with the estimated network capacity. However, such controllers can- not precisely estimate the cellular link capacity that changes at timescales smaller than the feedback delay. We instead propose a different approach for controlling congestion on 5G links. We send real-time data streams using an imprecise controller (that errs on the side of overestimating network capacity) to ensure high through- put, and then adapt the transmitted content by dropping appropriate packets in the cellular base stations to match the actual capacity and minimize delay. We build a system called Octopus to realize this ap- proach. Octopus provides parameterized primitives that applications at the endhost can configure differently to express different content adaptation policies. Octopus transport encodes the corresponding app-specified parameters in packet header fields, which the base- station logic can parse to execute the desired dropping behavior. Our evaluation shows how real-time applications involving standard and volumetric videos can be designed to exploit Octopus, and achieve 1.5–18× better performance than state-of-the-art schemes. 
    more » « less
  2. null (Ed.)
    Cellular networks are becoming ever more sophisticated and over-crowded, imposing the most delay, jitter, and throughput damage to end-to-end network flows in today’s internet. We therefore ar- gue for fine-grained mobile endpoint-based wireless measurements to inform a precise congestion control algorithm through a well- defined API to the mobile’s cellular physical layer. Our proposed congestion control algorithm is based on Physical-Layer Bandwidth measurements taken at the Endpoint (PBE-CC), and captures the latest 5G New Radio innovations that increase wireless capacity, yet create abrupt rises and falls in available wireless capacity that the PBE-CC sender can react to precisely and rapidly. We imple- ment a proof-of-concept prototype of the PBE measurement module on software-defined radios and the PBE sender and receiver in C. An extensive performance evaluation compares PBE-CC head to head against the cellular-aware and wireless-oblivious congestion control protocols proposed in the research community and in deployment, in mobile and static mobile scenarios, and over busy and idle networks. Results show 6.3% higher average throughput than BBR, while simultaneously reducing 95th percentile delay by 1.8×. 
    more » « less
  3. 5G New Radio cellular networks are designed to provide high Quality of Service for application on wirelessly connected devices. However, changing conditions of the wireless last hop can degrade application performance, and the applications have no visibility into the 5G Radio Access Network (RAN). Most 5G network operators run closed networks, limiting the potential for co-design with the wider-area internet and user applications. This paper demonstrates NR-Scope, a passive, incrementally-deployable, and independently-deployable Standalone 5G network telemetry system that can passively measure fine-grained RAN capacity, latency, and retransmission information. Application servers can take advantage of the measurements to achieve better millisecond scale, application-level decisions on offered load and bit rate adaptation than end-to-end latency measurements or end-to-end packet losses currently permit. We demonstrate the performance of NR-Scope by decoding the downlink control information (DCI) for downlink and uplink traffic of a 5G Standalone base station in real-time. 
    more » « less
  4. Thanks to advancements in wireless networks, robotics, and artificial intelligence, future manufacturing and agriculture processes may be capable of producing more output with lower costs through automation. With ultra fast 5G mmWave wireless networks, data can be transferred to and from servers within a few milliseconds for real-time control loops, while robotics and artificial intelligence can allow robots to work alongside humans in factory and agriculture environments. One important consideration for these applications is whether the “intelligence” that processes data from the environment and decides how to react should be located directly on the robotic device that interacts with the environment - a scenario called “edge computing” - or whether it should be located on more powerful centralized servers that communicate with the robotic device over a network - “cloud computing.” For applications that require a fast response time, such as a robot that is moving and reacting to an agricultural environment in real time, there are two important tradeoffs to consider. On the one hand, the processor on the edge device is likely not as powerful as the cloud server, and may take longer to generate the result. On the other hand, cloud computing requires both the input data and the response to traverse a network, which adds some delay that may cancel out the faster processing time of the cloud server. Even with ultra-fast 5G mmWave wireless links, the frequent blockages that are characteristic of this band can still add delay. To explore this issue, we run a series of experiments on the Chameleon testbed emulating both the edge and cloud scenarios under various conditions, including different types of hardware acceleration at the edge and the cloud, and different types of network configurations between the edge device and the cloud. These experiments will inform future use of these technologies and serve as a jumping off point for further research. 
    more » « less
  5. Abstract Recent advancements in network science showed that the topological credentials of the elements (i.e., links) in a network carry important implications. Likewise, roadway segments (i.e., links) in a road network should be assessed based on their network position along with traffic conditions at a given geographic scale. The goal of this study is to present a framework that can identify and select critical links in a road network based on their topological importance such as centrality, and the effects of systematic interventions conducted on such links in improving overall system performance (vehicle delay, travel time) to provide an adequate level of service (LOS). A real-world road network (Boise downtown) is investigated by applying lane interventions on roadways experiencing high congestion. Microscopic traffic simulation and analyses are conducted to estimate the traffic flow parameters hence the performance of the road segments. The findings of this study show that interventions applied to critical and congested road segments improve the serviceability from LOS F to LOS E as well as from LOS D to LOS C. Besides, reduced travel time and vehicular delay (after applying intervention on critical components) are also observed for high demand OD pairs of the road network. As such the proposed framework has the potential to incorporate the topological credentials with traffic flow parameters and improve the performance of the road network. This systematic approach will help traffic managers and practitioners to develop strategies that enhance road network performance. 
    more » « less