skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stochastic Constraints: How Feasible Is Feasible?
Award ID(s):
2035086
PAR ID:
10526944
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Proceedings of the 2023 Winter Simulation Conference
ISSN:
0891-7736
Page Range / eLocation ID:
3589-3600
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Corlu, C G; Hunter, S R; Lam, H; Onggo, B S; Shortle, J; Biller, B (Ed.)
    Stochastic constraints, which constrain an expectation in the context of simulation optimization, can be hard to conceptualize and harder still to assess. As with a deterministic constraint, a solution is considered either feasible or infeasible with respect to a stochastic constraint. This perspective belies the subjective nature of stochastic constraints, which often arise when attempting to avoid alternative optimization formulations with multiple objectives or an aggregate objective with weights. Moreover, a solution’s feasibility with respect to a stochastic constraint cannot, in general, be ascertained based on only a finite number of simulation replications. We introduce different means of estimating how “close” the expected performance of a given solution is to being feasible with respect to one or more stochastic constraints. We explore how these metrics and their bootstrapped error estimates can be incorporated into plots showing a solver’s progress over time when solving a stochastically constrained problem. 
    more » « less
  2. Stochastic constraints, which constrain an expectation in the context of simulation optimization, can be hard to conceptualize and harder still to assess. As with a deterministic constraint, a solution is considered either feasible or infeasible with respect to a stochastic constraint. This perspective belies the subjective nature of stochastic constraints, which often arise when attempting to avoid alternative optimization formulations with multiple objectives or an aggregate objective with weights. Moreover, a solution’s feasibility with respect to a stochastic constraint cannot, in general, be ascertained based on only a finite number of simulation replications. We introduce different means of estimating how “close” the expected performance of a given solution is to being feasible with respect to one or more stochastic constraints. We explore how these metrics and their bootstrapped error estimates can be incorporated into plots showing a solver’s progress over time when solving a stochastically constrained problem. 
    more » « less
  3. We propose a new variant of the top arm identification problem, top feasible arm identification, where there are K arms associated with D-dimensional distributions and the goal is to find m arms that maximize some known linear function of their means subject to the constraint that their means belong to a given set P € R D. This problem has many applications since in many settings, feedback is multi-dimensional and it is of interest to perform constrained maximization. We present problem-dependent lower bounds for top feasible arm identification and upper bounds for several algorithms. Our most broadly applicable algorithm, TF-LUCB-B, has an upper bound that is loose by a factor of OpDlogpKqq. Many problems of practical interest are two dimensional and, for these, it is loose by a factor of OplogpKqq. Finally, we conduct experiments on synthetic and real-world datasets that demonstrate the effectiveness of our algorithms. Our algorithms are superior both in theory and in practice to a naive two-stage algorithm that first identifies the feasible arms and then applies a best arm identification algorithm to the feasible arms. 
    more » « less