skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hawaiʻi Volcanoes National Park plant cover, seedling, and plot description data, 2019
This data release includes data and metadata on plant and substrate cover, seedling counts, canopy cover, burn severity, and location information for plots that were established to monitor the efficacy of post-fire seed addition in Hawaiʻi Volcanoes National Park on the Island of Hawaiʻi.  more » « less
Award ID(s):
1913501
PAR ID:
10526956
Author(s) / Creator(s):
;
Publisher / Repository:
U.S. Geological Survey
Date Published:
Subject(s) / Keyword(s):
ecology
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Staphylococcus aureus are human facultative pathogenic bacteria and can be found as contaminants in the environment. The aim of our study was to determine whether methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) isolated from coastal beach and river waters, anchialine pools, sand, and wastewater on the island of Hawaiʻi, Hawaiʻi, are a potential health risk. Samples were collected from three regions on Hawaiʻi Island from July to December 2020 during the COVID-19 pandemic and were characterized using whole-genome sequencing (WGS). From WGS data, multilocus sequence typing (MLST), SCCmec type, antimicrobial resistance genes, virulence factors, and plasmids were identified. Of the 361 samples, 98.1% were positive for Staphylococcus spp. and 7.2% were S. aureus positive (n = 26); nine MRSA and 27 MSSA strains were characterized; multiple isolates were chosen from the same sample in two sand and seven coastal beach water samples. The nine MRSA isolates were multi-drug resistant (6–9 genes) sequence type (ST) 8, clonal complex (CC) 8, SCCmec type IVa (USA300 clone), and were clonally related (0–16 SNP differences), and carried 16–19 virulence factors. The 27 MSSA isolates were grouped into eight CCs and 12 STs. Seventy-eight percent of the MSSA isolates carried 1–5 different antibiotic resistance genes and carried 5–19 virulence factors. We found S. aureus in coastal beach and river waters, anchialine pools, and sand at locations with limited human activity on the island of Hawaiʻi. This may be a public health hazard. 
    more » « less
  2. Abstract The Hawaiian Islands are known to harbour a rich and diverse fauna of troglobionts (obligate subterranean species). To date, 74 obligate cavernicolous arthropod species have been documented from across the main Hawaiian islands, the majority of which were from Hawaiʻi Island, and mostly from lava tubes of Kilauea volcano, the youngest volcano on the island. A recent bioinventory of the Kipuka Kanohina lava tube system on the south-western side of Mauna Loa volcano revealed the existence of previously unknown cave-adapted species. Among them is the first cave-adapted species of the planthopper genus Iolania, Iolania frankanstonei Hoch & Porter sp. nov. Morphological and molecular data suggest that the species is closely related to the epigean (i.e. surface-dwelling) species Iolania perkinsi, which occurs in surface environments on Hawaiʻi Island. Thus, parapatric speciation is assumed, further corroborating the assumption that adaptive shifts are the major evolutionary patterns underlying the evolution of troglobionts on young oceanic islands. 
    more » « less
  3. Recent collection efforts along the Brazilian coast revealed a Haliclona species preliminarily identified as a likely new species. However, sequencing of the 28S rRNA C-Region, a barcode marker in sponges, showed its high genetic similarity with a Haliclona sp. from Hawaiʻi (GenBank MW016137–MW016139). We applied an integrated morphological and molecular assessment, which allowed us to identify both Brazilian and Hawaiian specimens as H. (Reniera) laubenfelsi, a species with an Indo-Pacific distribution. We postulate this species to be exotic both in the Brazilian coast and in Hawaiʻi. Our evidence is based on the arrival of the species in Brazil after 2001, being first registered next to an international port. In turn, the species is distributed discontinuously in Hawaiʻi, being mainly restricted to sheltered bays and vicinities of ports, showing a predilection for anthropogenic substrates, which strengthen the hypothesis of its exotic origin. Recent collections in Hawaiʻi (2016–2018) failed to find this species in natural habitats, though it was an abundant pioneer species in Autonomous Reef Monitoring Structures. Its capacity to colonize artificial substrata may indicate either a cryptobenthic nature or an invasive potential. We highlight the need of monitoring its abundance, spatial distribution, and biotic interactions along the Brazilian coast to assess its potential environmental impacts. The full morphological description, and the molecular sequences we provided certainly will speed up the identification of this species, allowing to track its range extension. 
    more » « less
  4. Abstract The malaria parasitePlasmodium relictum(lineage GRW4) was introduced less than a century ago to the native avifauna of Hawaiʻi, where it has since caused major declines of endemic bird populations. One of the native bird species that is frequently infected with GRW4 is the Hawaiʻi ʻamakihi (Chlorodrepanis virens). To achieve a better understanding of the transcriptional activities of this virulent parasite, we performed a controlled challenge experiment of 15 ʻamakihi that were infected with GRW4. Blood samples containing malaria parasites were collected at two time points (intermediate and peak infection stages) from host individuals that were either experimentally infected by mosquitoes or inoculated with infected blood. We then used RNA sequencing to assemble a high‐quality blood transcriptome ofP. relictumGRW4, allowing us to quantify parasite expression levels inside individual birds. We found few significant differences (one to two transcripts) in GRW4 expression levels between host infection stages and between inoculation methods. However, 36 transcripts showed differential expression levels among all host individuals, indicating a potential presence of host‐specific gene regulation across hosts. To reduce the extinction risk of the remaining native bird species in Hawaiʻi, genetic resources of the localPlasmodiumlineage are needed to enable further molecular characterization of this parasite. Our newly built Hawaiian GRW4 transcriptome assembly, together with analyses of the parasite's transcriptional activities inside the blood of Hawaiʻi ʻamakihi, can provide us with important knowledge on how to combat this deadly avian disease in the future. 
    more » « less
  5. Drought is a prominent feature of Hawaiʻi’s climate. However, it has been over 30 years since the last comprehensive meteorological drought analysis, and recent drying trends have emphasized the need to better understand drought dynamics and multi-sector effects in Hawaiʻi. Here, we provide a comprehensive synthesis of past drought effects in Hawaiʻi that we integrate with geospatial analysis of drought characteristics using a newly developed 100-year (1920–2019) gridded Standardized Precipitation Index (SPI) dataset. The synthesis examines past droughts classified into five categories: Meteorological, agricultural, hydrological, ecological, and socioeconomic drought. Results show that drought duration and magnitude have increased significantly, consistent with trends found in other Pacific Islands. We found that most droughts were associated with El Niño events, and the two worst droughts of the past century were multi-year events occurring in 1998–2002 and 2007–2014. The former event was most severe on the islands of O’ahu and Kaua’i while the latter event was most severe on Hawaiʻi Island. Within islands, we found different spatial patterns depending on leeward versus windward contrasts. Droughts have resulted in over $80 million in agricultural relief since 1996 and have increased wildfire risk, especially during El Niño years. In addition to providing the historical context needed to better understand future drought projections and to develop effective policies and management strategies to protect natural, cultural, hydrological, and agricultural resources, this work provides a framework for conducting drought analyses in other tropical island systems, especially those with a complex topography and strong climatic gradients. 
    more » « less