skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 11, 2025

Title: Ionic Covalent Organic Frameworks Consisting of Tetraborate Nodes and Flexible Linkers
Covalent organic frameworks (COFs) have emerged as versatile materials with many applications, such as carbon capture, molecular separation, catalysis, and energy storage. Traditionally, flexible building blocks have been avoided due to their potential to disrupt ordered structures. Recent studies have demonstrated intriguing properties and enhanced structural diversity achievable with flexible components by judicious selection of building blocks. This study presents a novel series of ionic COFs (ICOFs) consisting of tetraborate nodes and flexible linkers. These ICOFs use borohydrides to irreversibly deprotonate the alcohol monomers to achieve a high polymerization degree. Structural analysis confirms the dia topologies. Reticulation is explored using various monomers and metal counter‐ions. Also, these frameworks exhibit excellent stability in alcohols and coordinating solvents. The materials are tested as single‐ion conductive solid‐state electrolytes. ICOF‐203‐Li displays one of the lowest activation energies reported for ion conduction. This tetraborate chemistry is anticipated to facilitate further structural diversity and functionality in crystalline polymers.  more » « less
Award ID(s):
2108197
PAR ID:
10527851
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Angewandte Chemie International Edition
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Connecting molecular building blocks by covalent bonds to form extended crystalline structures has caused a sharp upsurge in the field of porous materials, especially covalent organic frameworks (COFs), thereby translating the accuracy, precision, and versatility of covalent chemistry from discrete molecules to two-dimensional and three-dimensional crystalline structures. COFs are crystalline porous frameworks prepared by a bottom-up approach from predesigned symmetric units with well-defined structural properties such as a high surface area, distinct pores, cavities, channels, thermal and chemical stability, structural flexibility and functional design. Due to the tedious and sometimes impossible introduction of certain functionalities into COFs via de novo synthesis, pore surface engineering through judicious functionalization with a range of substituents under ambient or harsh conditions using the principle of coordination chemistry, chemical conversion, and building block exchange is of profound importance. In this review, we aim to summarize dynamic covalent chemistry and framework linkage in the context of design features, different methods and perspectives of pore surface engineering along with their versatile roles in a plethora of applications such as biomedical, gas storage and separation, catalysis, sensing, energy storage and environmental remediation. 
    more » « less
  2. Abstract A three‐component synthesis methodology is described for the formation of covalent organic frameworks (COFs) containing extended aromatics. Notably, this approach enables synthesis of the building blocks and COF along parallel reaction landscapes, on a similar timeframe. The use of fragmental building block components, namely pyrene dione diboronic acid as aggregation‐inducing COF precursor and the diamineso‐phenylenediamine (Ph), 2,3‐diaminonaphthalene (Naph), or (1R,2R)‐(+)‐1,2‐diphenylethylenediamine (2Ph) as extending functionalization units in conjunction with 2,3,6,7,10,11‐hexahydroxytriphenylene, resulted in the formation of the corresponding pyrene‐fused azaacene, i.e., Aza‐COF series with full conversion of the dione moiety, long‐range order, and high surface area. In addition, the novel three‐component synthesis was successfully applied to produce highly crystalline, oriented thin films of the Aza‐COFs with nanostructured surfaces on various substrates. The Aza‐COFs exhibit light absorption maxima in the blue spectral region, and each Aza‐COF presents a distinct photoluminescence profile. Transient absorption measurements of Aza‐Ph‐ and Aza‐Naph‐COFs suggest ultrafast relaxation dynamics of excited‐states within these COFs. 
    more » « less
  3. null (Ed.)
    Covalent organic frameworks (COFs) are an advanced class of crystalline porous polymers that have garnered significant interest due to their tunable properties and robust molecular architectures. As a result, COFs with energy-storage properties are of particular interest to the field of rechargeable battery electrode materials. However, investigation into COFs as candidates for energy-storage materials is still in its infancy. This review will highlight methods used to fabricate COFs used as electrode materials and discuss the factors that prove critical for their production. A collection of known COF-based energy-storage systems will be featured. In addition, the ability to utilize the storage properties of COFs for systems beyond traditional Li-ion batteries will be addressed. An outlook will address the current progress and remaining challenges facing the field to ultimately expand the scope of their applications. 
    more » « less
  4. Abstract Tailor‐made materials featuring large tunability in their thermal transport properties are highly sought‐after for diverse applications. However, achieving `user‐defined’ thermal transport in a single class of material system with tunability across a wide range of thermal conductivity values requires a thorough understanding of the structure‐property relationships, which has proven to be challenging. Herein, large‐scale computational screening of covalent organic frameworks (COFs) for thermal conductivity is performed, providing a comprehensive understanding of their structure‐property relationships by leveraging systematic atomistic simulations of 10,750 COFs with 651 distinct organic linkers. Through the data‐driven approach, it is shown that by strategic modulation of their chemical and structural features, the thermal conductivity can be tuned from ultralow (≈0.02 W m−1K−1) to exceptionally high (≈50 W m−1K−1) values. It is revealed that achieving high thermal conductivity in COFs requires their assembly through carbon–carbon linkages with densities greater than 500 kg m−3, nominal void fractions (in the range of ≈0.6–0.9) and highly aligned polymeric chains along the heat flow direction. Following these criteria, it is shown that these flexible polymeric materials can possess exceptionally high thermal conductivities, on par with several fully dense inorganic materials. As such, the work reveals that COFs mark a new regime of materials design that combines high thermal conductivities with low densities. 
    more » « less
  5. Catalysis is ubiquitous in ∼90% of chemical manufacturing processes and contributes up to 35% of global GDP. Hence, the development of advanced catalytic systems is of utmost importance for academia, industry, and government. Covalent organic frameworks (COFs) are a rapidly emerging class of crystalline porous materials that precisely integrate organic monomer units into extended periodic networks, offering a propitious platform for heterogeneous catalysis due to salient structural merits of ultralow density, high crystallinity, permanent porosity, structural tunability, functional diversity, and synthetic versatility. The past decade has witnessed an upsurge of interest in COFs for heterogeneous catalysis and this trend is expected to continue. In this review, we briefly introduce COF chemistry concerning the design principles, growth mechanism, and cutting-edge advances in structural evolution, linkage chemistry, and facile synthesis. We then scrutinize four leading design strategies for COF catalysts, namely pristine COFs with catalytically active backbones, COFs as hosts for the inclusion of catalytic species, COF-based heterostructures, and COF-derived carbons for thermo-, photo-, and electrocatalysis. Next, we overview the most recent advances (mainly from 2020 to 2023) of COFs in heterogeneous catalysis, along with their fundamentals and advantages. Finally, we outline the current challenges and offer our perspectives on the future directions of COFs for heterogeneous catalysis. 
    more » « less