skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Strongly dense free subgroups of semisimple algebraic groups II
It was shown in [10] that that there exist strongly dense free subgroups in any semisimple algebraic group over a large enough field. These are nonabelian free subgroups all of whose subgroups are either cyclic or Zariski-dense. Here we show that the same is true for as long as the transcendence degree of the field is at least 1 in characteristic 0 and transcendence degree at least 2 in positive characteristic.  more » « less
Award ID(s):
2001349
PAR ID:
10527918
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Algebra
Volume:
656
Issue:
C
ISSN:
0021-8693
Page Range / eLocation ID:
143 to 169
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We provide a uniform bound for the index of cohomology classes over semiglobal fields (i.e., over one-variable function fields over a complete discretely valued field K). The bound is given in terms of the analogous data for the residue field of K and its finitely generated extensions of transcendence degree at most one. We also obtain analogous bounds for collections of cohomology classes. Our results provide recursive formulas for function fields over higher rank complete discretely valued fields, and explicit bounds in some cases when the information on the residue field is known. In the process, we prove a splitting result for cohomology classes of degree 3 in the context of surfaces over finite fields. ∗ 
    more » « less
  2. null (Ed.)
    We solve the inverse differential Galois problem over differential fields with a large field of constants of infinite transcendence degree over  $$\mathbb{Q}$$ . More generally, we show that over such a field, every split differential embedding problem can be solved. In particular, we solve the inverse differential Galois problem and all split differential embedding problems over $$\mathbb{Q}_{p}(x)$$ . 
    more » « less
  3. We develop a support theory for elementary supergroup schemes, over a field of positive characteristic p ⩾ 3 p\geqslant 3 , starting with a definition of a π \pi -point generalising cyclic shifted subgroups of Carlson for elementary abelian groups and π \pi -points of Friedlander and Pevtsova for finite group schemes. These are defined in terms of maps from the graded algebra k [ t , τ ] / ( t p − τ 2 ) k[t,\tau ]/(t^p-\tau ^2) , where t t has even degree and τ \tau has odd degree. The strength of the theory is demonstrated by classifying the parity change invariant localising subcategories of the stable module category of an elementary supergroup scheme. 
    more » « less
  4. We introduce a new type of characteristic sets of difference polynomials using a generalization of the concept of effective order to the case of partial difference polynomials and a partition of the basic set of translations σ. Using properties of these characteristic sets, we prove the existence and outline a method of computation of a multivariate dimension polynomial of a finitely generated difference field extension that describes the transcendence degrees of intermediate fields obtained by adjoining transforms of the generators whose orders with respect to the components of the partition of σ are bounded by two sequences of natural numbers. We show that such dimension polynomials carry essentially more invariants (that is, characteristics of the extension that do not depend on the set of its difference generators) than previously known difference dimension polynomials. In particular, a dimension polynomial of the new type associated with a system of algebraic difference equations gives more information about the system than the classical univariate difference dimension polynomial. 
    more » « less
  5. null (Ed.)
    We present a method of Gröbner bases with respect to several term orderings and use it to obtain new results on multivariate dimension polynomials of inversive difference modules. Then we use the difference structure of the module of Kahler differentials associated with a finitely generated inversive difference field extension of a given difference transcendence degree to describe the form of a multivariate difference dimension polynomial of the extension. 
    more » « less