skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bounding cohomology classes over semiglobal fields
We provide a uniform bound for the index of cohomology classes over semiglobal fields (i.e., over one-variable function fields over a complete discretely valued field K). The bound is given in terms of the analogous data for the residue field of K and its finitely generated extensions of transcendence degree at most one. We also obtain analogous bounds for collections of cohomology classes. Our results provide recursive formulas for function fields over higher rank complete discretely valued fields, and explicit bounds in some cases when the information on the residue field is known. In the process, we prove a splitting result for cohomology classes of degree 3 in the context of surfaces over finite fields. ∗  more » « less
Award ID(s):
2102987 1805439 2401018
PAR ID:
10516723
Author(s) / Creator(s):
; ;
Publisher / Repository:
The Hebrew University of Jerusalem
Date Published:
Journal Name:
Israel Journal of Mathematics
Volume:
257
Issue:
2
ISSN:
0021-2172
Page Range / eLocation ID:
353 to 387
Subject(s) / Keyword(s):
Galois cohomology, splitting, arithmetic curves, local-global principles, finite group schemes, semi-global fields, patching, étale algebras
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We prove an inequality between the conductor and the discriminant for all hyperelliptic curves defined over discretely valued fields $$K$$ with perfect residue field of characteristic not $$2$$. Specifically, if such a curve is given by $$y^{2} = f(x)$$ with $$f(x) \in \mathcal{O}_{K}[x]$$, and if $$\mathcal{X}$$ is its minimal regular model over $$\mathcal{O}_{K}$$, then the negative of the Artin conductor of $$\mathcal{X}$$ (and thus also the number of irreducible components of the special fiber of $$\mathcal{X}$$) is bounded above by the valuation of $$\operatorname{disc}(f)$$. There are no restrictions on genus of the curve or on the ramification of the splitting field of $$f$$. This generalizes earlier work of Ogg, Saito, Liu, and the second author. 
    more » « less
  2. The epsilon-approximate degree, deg_epsilon(f), of a Boolean function f is the least degree of a real-valued polynomial that approximates f pointwise to within epsilon. A sound and complete certificate for approximate degree being at least k is a pair of probability distributions, also known as a dual polynomial, that are perfectly k-wise indistinguishable, but are distinguishable by f with advantage 1 - epsilon. Our contributions are: - We give a simple, explicit new construction of a dual polynomial for the AND function on n bits, certifying that its epsilon-approximate degree is Omega (sqrt{n log 1/epsilon}). This construction is the first to extend to the notion of weighted degree, and yields the first explicit certificate that the 1/3-approximate degree of any (possibly unbalanced) read-once DNF is Omega(sqrt{n}). It draws a novel connection between the approximate degree of AND and anti-concentration of the Binomial distribution. - We show that any pair of symmetric distributions on n-bit strings that are perfectly k-wise indistinguishable are also statistically K-wise indistinguishable with at most K^{3/2} * exp (-Omega (k^2/K)) error for all k < K <= n/64. This bound is essentially tight, and implies that any symmetric function f is a reconstruction function with constant advantage for a ramp secret sharing scheme that is secure against size-K coalitions with statistical error K^{3/2} * exp (-Omega (deg_{1/3}(f)^2/K)) for all values of K up to n/64 simultaneously. Previous secret sharing schemes required that K be determined in advance, and only worked for f=AND. Our analysis draws another new connection between approximate degree and concentration phenomena. As a corollary of this result, we show that for any d <= n/64, any degree d polynomial approximating a symmetric function f to error 1/3 must have coefficients of l_1-norm at least K^{-3/2} * exp ({Omega (deg_{1/3}(f)^2/d)}). We also show this bound is essentially tight for any d > deg_{1/3}(f). These upper and lower bounds were also previously only known in the case f=AND. 
    more » « less
  3. Abstract We formulate a general problem: Given projective schemes and over a global fieldKand aK‐morphism η from to of finite degree, how many points in of height at mostBhave a pre‐image under η in ? This problem is inspired by a well‐known conjecture of Serre on quantitative upper bounds for the number of points of bounded height on an irreducible projective variety defined over a number field. We give a nontrivial answer to the general problem when and is a prime degree cyclic cover of . Our tool is a new geometric sieve, which generalizes the polynomial sieve to a geometric setting over global function fields. 
    more » « less
  4. We study p-adic hyper-Kloosterman sums, a generalization of the Kloosterman sum with a parameter k that recovers the classical Kloosterman sum when k = 2, over general p-adic rings and even equal characteristic local rings. These can be evaluated by a simple stationary phase estimate when k is not divisible by p, giving an essentially sharp bound for their size. We give a more complicated stationary phase estimate to evaluate them in the case when k is divisible by p. This gives both an upper bound and a lower bound showing the upper bound is essentially sharp. This generalizes previously known bounds in the case of ℤ/p. The lower bounds in the equal characteristic case have two applications to function field number theory, showing that certain short interval sums and certain moments of Dirichlet L-functions do not, as one might hope, admit square-root cancellation. 
    more » « less
  5. null (Ed.)
    The approximate degree of a Boolean function f is the least degree of a real polynomial that approximates f pointwise to error at most 1/3. The approximate degree of f is known to be a lower bound on the quantum query complexity of f (Beals et al., FOCS 1998 and J. ACM 2001). We find tight or nearly tight bounds on the approximate degree and quantum query complexities of several basic functions. Specifically, we show the following. k-Distinctness: For any constant k, the approximate degree and quantum query complexity of the k-distinctness function is Ω(n3/4−1/(2k)). This is nearly tight for large k, as Belovs (FOCS 2012) has shown that for any constant k, the approximate degree and quantum query complexity of k-distinctness is O(n3/4−1/(2k+2−4)). Image size testing: The approximate degree and quantum query complexity of testing the size of the image of a function [n]→[n] is Ω~(n1/2). This proves a conjecture of Ambainis et al. (SODA 2016), and it implies tight lower bounds on the approximate degree and quantum query complexity of the following natural problems. k-Junta testing: A tight Ω~(k1/2) lower bound for k-junta testing, answering the main open question of Ambainis et al. (SODA 2016). Statistical distance from uniform: A tight Ω~(n1/2) lower bound for approximating the statistical distance of a distribution from uniform, answering the main question left open by Bravyi et al. (STACS 2010 and IEEE Trans. Inf. Theory 2011). Shannon entropy: A tight Ω~(n1/2) lower bound for approximating Shannon entropy up to a certain additive constant, answering a question of Li and Wu (2017). Surjectivity: The approximate degree of the surjectivity function is Ω~(n3/4). The best prior lower bound was Ω(n2/3). Our result matches an upper bound of O~(n3/4) due to Sherstov (STOC 2018), which we reprove using different techniques. The quantum query complexity of this function is known to be Θ(n) (Beame and Machmouchi, Quantum Inf. Comput. 2012 and Sherstov, FOCS 2015). Our upper bound for surjectivity introduces new techniques for approximating Boolean functions by low-degree polynomials. Our lower bounds are proved by significantly refining techniques recently introduced by Bun and Thaler (FOCS 2017). 
    more » « less