The present paper offers a thorough examination of the safety measures enforced at hydrogen filling stations, emphasizing their crucial significance in the wider endeavor to advocate for hydrogen as a sustainable and reliable substitute for conventional fuels. The analysis reveals a wide range of crucial safety aspects in hydrogen refueling stations, including regulated hydrogen dispensing, leak detection, accurate hydrogen flow measurement, emergency shutdown systems, fire-suppression mechanisms, hydrogen distribution and pressure management, and appropriate hydrogen storage and cooling for secure refueling operations. The paper therefore explores several aspects, including the sophisticated architecture of hydrogen dispensers, reliable leak-detection systems, emergency shut-off mechanisms, and the implementation of fire-suppression tactics. Furthermore, it emphasizes that the safety and effectiveness of hydrogen filling stations are closely connected to the accuracy in the creation and upkeep of hydrogen dispensers. It highlights the need for materials and systems that can endure severe circumstances of elevated pressure and temperature while maintaining safety. The use of sophisticated leak-detection technology is crucial for rapidly detecting and reducing possible threats, therefore improving the overall safety of these facilities. Moreover, the research elucidates the complexities of emergency shut-off systems and fire-suppression tactics. These components are crucial not just for promptly managing hazards, but also for maintaining the station’s structural soundness in unanticipated circumstances. In addition, the study provides observations about recent technical progress in the industry. These advances effectively tackle current safety obstacles and provide the foundation for future breakthroughs in hydrogen fueling infrastructure. The integration of cutting-edge technology and materials, together with the development of upgraded safety measures, suggests a positive trajectory towards improved efficiency, dependability, and safety in hydrogen refueling stations.
more »
« less
Experimental Comparison of Hydrogen Refueling with Directly Pressurized vs. Cascade Method
This paper presents a comparative analysis of two hydrogen station configurations during the refueling process: the conventional “directly pressurized refueling process” and the innovative “cascade refueling process.” The objective of the cascade process is to refuel vehicles without the need for booster compressors. The experiments were conducted at the Hydrogen Research and Fueling Facility located at California State University, Los Angeles. In the cascade refueling process, the facility buffer tanks were utilized as high-pressure storage, enabling the refueling operation. Three different scenarios were tested: one involving the cascade refueling process and two involving compressor-driven refueling processes. On average, each refueling event delivered 1.6 kg of hydrogen. Although the cascade refueling process using the high-pressure buffer tanks did not achieve the pressure target, it resulted in a notable improvement in the nozzle outlet temperature trend, reducing it by approximately 8 °C. Moreover, the overall hydrogen chiller load for the two directly pressurized refuelings was 66 Wh/kg and 62 Wh/kg, respectively, whereas the cascading process only required 55 Wh/kg. This represents a 20% and 12% reduction in energy consumption compared to the scenarios involving booster compressors during fueling. The observed refueling range of 150–350 bar showed that the cascade process consistently required 12–20% less energy for hydrogen chilling. Additionally, the nozzle outlet temperature demonstrated an approximate 8 °C improvement within this pressure range. These findings indicate that further improvements can be expected in the high-pressure region, specifically above 350 bar. This research suggests the potential for significant improvements in the high-pressure range, emphasizing the viability of the cascade refueling process as a promising alternative to the direct compression approach.
more »
« less
- Award ID(s):
- 2112554
- PAR ID:
- 10528220
- Publisher / Repository:
- Energies (MDPI)
- Date Published:
- Journal Name:
- Energies
- Volume:
- 16
- Issue:
- 15
- ISSN:
- 1996-1073
- Page Range / eLocation ID:
- 5749
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Computational Modeling of High-Speed Flow of Two-Phase Hydrogen through a Tube with Abrupt ExpansionHydrogen can become a prevalent renewable fuel in the future green economy, but technical and economic hurdles associated with handling hydrogen must be overcome. To store and transport hydrogen in an energy-dense liquid form, very cold temperatures, around 20 K, are required. Evaporation affects the achievable mass flow rate during the high-speed transfer of hydrogen at large pressure differentials, and accurate prediction of this process is important for the practical design of hydrogen transfer systems. Computational fluid dynamics modeling of two-phase hydrogen flow is carried out in the present study using the volume-of-fluid method and the Lee relaxation model for the phase change. Suitable values of the relaxation time parameter are determined by comparing numerical results with test data for high-speed two-phase hydrogen flows in a configuration involving a tube with sudden expansion, which is common in practical systems. Simulations using a variable outlet pressure are conducted to demonstrate the dependence of flow rates on the driving pressure differential, including the attainment of the critical flow regime. Also shown are computational results for flows with various inlet conditions and a fixed outlet state. Field distributions of the pressure, velocity, and vapor fractions are presented for several flow regimes.more » « less
-
Geodesign is a participatory planning approach in which stakeholders use geographic information systems to develop and vet alternative design scenarios in a collaborative and iterative process. This study is based on a 2019 geodesign workshop in which 17 participants from industry, government, university, and non-profit sectors worked together to design an initial network of hydrogen refueling stations in the Hartford, Connecticut, metropolitan area. The workshop involved identifying relevant location factors, rapid prototyping of station network designs, and developing consensus on a final design. The geodesign platform, which was designed specifically for facility location problems, enables breakout groups to add or delete stations with a simple point-and-click operation, view and overlay different map layers, compute performance metrics, and compare their designs to those of other groups. By using these sources of information and their own expert local knowledge, participants recommended six locations for hydrogen refueling stations over two distinct phases of station installation. We quantitatively and qualitatively compared workshop recommendations to solutions of three optimal station location models that have been used to recommend station locations, which minimize travel times from stations to population and traffic or maximize trips that can be refueled on origin–destination routes. In a post-workshop survey, participants rated the workshop highly for facilitating mutual understanding and information sharing among stakeholders. To our knowledge, this workshop represents the first application of geodesign for hydrogen refueling station infrastructure planning.more » « less
-
Jet impingement can be particularly effective for removing high heat fluxes from local hotspots. Two-phase jet impingement cooling combines the advantages of both the nucleate boiling heat transfer with the single-phase sensible cooling. This study investigates two-phase confined jet impingement cooling of local, laser-generated hotspots in a 100 nm thick Hafnium (Hf) thin film on glass. The jet/nozzle diameter is ∼1.2 mm and the normal distance between the nozzle outlet and the heated surface is ∼3.2 mm. The jet coolants studied are FC 72, Novec 7200, and Ethanol with jet nozzle outlet Reynolds numbers ranging from 250 to 5000. The hotspot area is ∼0.06 mm2 and the applied hotspot-to-jet heat fluxes range from 20 W/cm2 to 350 W/cm2. This heat flux range facilitates studies of both the single-phase and two-phase heat transport mechanisms for heat fluxes up to critical heat flux (CHF). The temporal evolution of the temperature distribution of the laser-heated surface is measured using infrared (IR) thermometry. This study focuses on the stagnation point heat transfer - i.e., the jet potential core is co-aligned with the hotspot center. For ethanol, the CHF is ∼315 W/cm2 at Re ∼ 1338 with a corresponding heat transfer coefficient of h ∼ 102 kW/m2·K. For FC 72, the CHF is ∼94 W/cm2 at Re ∼ 5000 with a corresponding h ∼ 56 kW/m2·K. And for Novec 7200, the CHF is ∼108 W/cm2 at Re ∼ 4600 with a corresponding h ∼ 50 kW/m2·K.more » « less
-
Hydrogen represents a promising renewable fuel, and its broad application can lead to drastic reductions in greenhouse gas emissions. Keeping hydrogen in liquid form helps achieve high energy density, but also requires cryogenic conditions for storage as hydrogen evaporates at temperatures of about 20 K, which can lead to a large pressure build-up in the tank. This paper addresses the unsteady thermal modeling of cryogenic tanks with liquid hydrogen. Considering the liquid and vapor phases in the tank as two nodes with averaged properties, a lumped-element method of low computational cost is developed and used for simulating two regimes: self-pressurization (also known as autogenous pressurization, or pressure build-up in the closed tank due to external heat leaks) and constant-pressure venting (when some hydrogen is let out of the tank to maintain pressure at a fixed level). The model compares favorably (within several percent for pressure) to experimental observations for autogenous pressurization in a NASA liquid hydrogen tank. The two processes of interest in this study are numerically investigated in tanks of similar shapes but different sizes ranging from about 2 to 1200 m3. Pressure and temperature growth rates are characterized in closed tanks, where the interfacial mass transfer manifests initial condensation followed by more pronounced evaporation. In tanks where pressure is kept fixed by venting some hydrogen from the vapor domain of the tank, the initial venting rate significantly exceeds evaporation rate, but after a settling period, magnitudes of both rates approach each other and continue evolving at a slower pace. The largest tank demonstrates a six-times-lower pressure rise than the smallest tank over a 100 h period. The relative boil-off losses in continuously vented tanks are found to be approximately proportional to the inverse of the tank diameter, thus generally following simple Galilean scaling with a few percent deviation due to scale effects. The model developed in this work is flexible for analyzing a variety of processes in liquid hydrogen storage systems, raising efficiencies, which is critically important for a future economy based on renewable energy.more » « less
An official website of the United States government

