Gridless direction-of-arrival (DOA) estimation with multiple frequencies can be applied to acoustic source localization. We formulate this as an atomic norm minimization (ANM) problem and derive a regularization-free semi-definite program (SDP) avoiding regularization bias. We also propose a fast SDP program to deal with non-uniform frequency spacing. The DOA is retrieved via irregular Vandermonde decomposition (IVD), and we theoretically guarantee the existence of the IVD. We extend ANM to the multiple measurement vector setting and derive its equivalent regularization-free SDP. For a uniform linear array using multiple frequencies, we can resolve more sources than the sensors. The effectiveness of the proposed framework is demonstrated via numerical experiments.
more »
« less
Non-Uniform Array and Frequency Spacing for Regularization-Free Gridless DOA
Gridless direction-of-arrival (DOA) estimation with multiple frequencies can be applied in acoustics source localization problems. We formulate this as an atomic norm minimization (ANM) problem and derive an equivalent regularization-free semi-definite program (SDP) thereby avoiding regularization bias. The DOA is retrieved using a Vandermonde decomposition on the Toeplitz matrix obtained from the solution of the SDP. We also propose a fast SDP program to deal with non-uniform array and frequency spacing. For non-uniform spacings, the Toeplitz structure will not exist, but the DOA is retrieved via irregular Vandermonde decomposition (IVD), and we theoretically guarantee the existence of the IVD. We extend ANM to the multiple measurement vector (MMV) cases and derive its equivalent regularization-free SDP. Using multiple frequencies and the MMV model, we can resolve more sources than the number of physical sensors for a uniform linear array. Numerical results demonstrate that the regularization-free framework is robust to noise and aliasing, and it overcomes the regularization bias.
more »
« less
- Award ID(s):
- 2203060
- PAR ID:
- 10528270
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Signal Processing
- Volume:
- 72
- ISSN:
- 1053-587X
- Page Range / eLocation ID:
- 2006 to 2020
- Subject(s) / Keyword(s):
- Sensors Direction-of-arrival estimation Estimation Sensor arrays Frequency estimation Wideband Noise Atomic norm minimization multiple frequencies Vandermonde decomposition DOA estimation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The convolutional beamspace (CBS) method for DOA estimation using dictionary-based sparse signal recovery is introduced. Beamspace methods enjoy lower computational complexity, increased parallelism of subband processing, and improved DOA resolution. But unlike classical beamspace methods, CBS allows root-MUSIC and ESPRIT to be performed directly for ULAs without additional preparation since the Vandermonde structure for ULAs are preserved in the CBS output. Due to the same reason, it is shown in this paper that sparse signal representation problems can also be directly formulated on the CBS output. Significant reduction in computational complexity and higher probability of resolution are obtained by using CBS. It is also shown how the regularization parameter involved in the method should be chosenmore » « less
-
null (Ed.)Anew beamspace method for array processing, called convolutional beamspace (CBS), is proposed. It enjoys the advantages of classical beamspace such as lower computational complexity, increased parallelism of subband processing, and improved resolution threshold for DOA estimation. But unlike classical beamspace methods, it allows root-MUSIC and ESPRIT to be performed directly for ULAs without additional preparation since the Vandermonde structure and the shift-invariance are preserved under the CBS transformation. The method produces more accurate DOA estimates than classical beamspace, and for correlated sources, better estimates than element-space. The method also generalizes to sparse arrays by effective use of the difference coarray. For this, the autocorrelation evaluated on theULAportion of the coarray is filtered appropriately to produce the coarray CBS. It is also shown how CBS can be used in the context of sparse signal representation with dictionaries, where the dictionaries have columns that resemble steering vectors at a dense grid of frequencies. Again CBS processing with dictionaries offers better resolution, accuracy, and lower computational complexity. As only the filter responses at discrete frequencies on the dictionary grid are relevant, the problem of designing discrete-frequency FIR filters is also addressed.more » « less
-
null (Ed.)A new type of beamspace for array processing is introduced called convolutional beamspace. It enjoys the advantages of traditional beamspace such as lower computational complexity, increased parallelism of subband processing, and improved resolution threshold for DOA estimation. But unlike traditional beamspace methods, it allows root-MUSIC and ESPRIT to be performed directly for ULAs without any overhead of preparation, as the Vandermonde structure and the shift-invariance are preserved under the transformation. The method produces more accurate DOA estimates than traditional beamspace methods, and for correlated sources it produces better estimates than element-space methods.more » « less
-
null (Ed.)Abstract We extend the Lebesgue decomposition of positive measures with respect to Lebesgue measure on the complex unit circle to the non-commutative (NC) multi-variable setting of (positive) NC measures. These are positive linear functionals on a certain self-adjoint subspace of the Cuntz–Toeplitz $$C^{\ast }-$$algebra, the $$C^{\ast }-$$algebra of the left creation operators on the full Fock space. This theory is fundamentally connected to the representation theory of the Cuntz and Cuntz–Toeplitz $$C^{\ast }-$$algebras; any *−representation of the Cuntz–Toeplitz $$C^{\ast }-$$algebra is obtained (up to unitary equivalence), by applying a Gelfand–Naimark–Segal construction to a positive NC measure. Our approach combines the theory of Lebesgue decomposition of sesquilinear forms in Hilbert space, Lebesgue decomposition of row isometries, free semigroup algebra theory, NC reproducing kernel Hilbert space theory, and NC Hardy space theory.more » « less
An official website of the United States government

