The battery electric truck (BET) has emerged as a promising solution to reduce greenhouse gas emissions in urban logistics, given the current strict environmental regulations. This research explores the formulation and solution of the bi-objective BET dispatching problem with backhauls and time windows, aiming to simultaneously reduce environmental impacts and enhance the efficiency of urban logistics. From the sustainability perspective, one of the objectives is to minimize total energy costs, which include energy consumption and battery replacement expenses. On the other hand, from an economic perspective, the other objective is the minimization of labor costs. To solve this bi-objective BET dispatching problem, we propose an innovative approach, integrating an adaptive large neighborhood search-based metaheuristics algorithm with a multi-objective optimization strategy. This integration enables the exploration of the trade-off between fleet energy expenses and labor costs, optimizing the dispatching decisions for BETs. To validate the proposed dispatching strategy, extensive experiments were conducted using real-world fleet operations data from a logistics fleet in Southern California. The results demonstrated that the proposed approach yields a set of Pareto solutions, showcasing its effectiveness in finding a balance between energy efficiency and labor costs in urban logistics systems. The findings of this research contribute to advancing sustainable urban logistics practices and provide valuable insights for fleet operators in effectively managing BET fleets to reduce environmental impacts while maintaining economic efficiency.
more »
« less
ANALYZING EQUITY IN TRUCK-DRONE COOPERATIVE DELIVERY FOR RURAL AREAS
Given the surge in rural logistics services and the disparities between urban and rural delivery services, a compelling necessity emerges to explore innovative drone-based delivery solutions. The challenges inherent in truck-drone delivery due to technological and physical barriers affect service quality for some rural customers, thus magnifying concerns about delivery fairness. To investigated delivery equity, we present a truck-drone cooperative delivery model to analyze rural customers’ accessibility to such innovative delivery technology. This model accommodates rural residents’ delivery preferences while optimizing truck routes. Drones are dispatched from designated trucks to serve customers within their flight distance. Our proposed heuristic algorithm, founded on graph-based truck-drone delivery preferences, solves this intricate problem efficiently. Numerical experiments underscore the efficacy of our approach, highlighting substantial reductions in delivery costs and an impressive 20% increase in drone deliveries on a large-scale network. Through sensitivity analyses exploring drone operational costs and flight distances–affected by government policies and technological advancements–we devise an equity metric that gauges the efficiency and accessibility of rapid rural delivery services under the truck-drone delivery framework. Our research contributes to equity analysis, addressing challenges faced by logistics companies and rural residents. Moreover, it bridges the gap between urban and rural logistics, fostering an inclusive and equitable delivery ecosystem benefiting all customers, regardless of their location.
more »
« less
- Award ID(s):
- 2200506
- PAR ID:
- 10528340
- Publisher / Repository:
- the 103rd Transportation Research Board Annual Meeting
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The logistics and delivery industry is undergoing a technology-driven transformation, with robotics, drones, and autonomous vehicles expected to play a key role in meeting the growing challenges of last-mile delivery. To understand the public acceptability of automated parcel delivery options, this U.S. study explores customer preferences for four innovations: autonomous vehicles, aerial drones, sidewalk robots, and bipedal robots. We use an Integrated Nested Choice and Correlated Latent Variable (INCLV) model to reveal substitution effects among automated delivery modes in a sample of U.S. respondents. The study finds that acceptance of automated delivery modes is strongly tied to shipment price and time, underscoring the importance of careful planning and incentives to maximize the trialability of innovative logistics options. Older individuals and those with concerns about package handling exhibit a lower preference for automated modes, while individuals with higher education and technology affinity exhibit greater acceptance. These findings provide valuable insights for logistics companies and retailers looking to introduce automation technologies in their last-mile delivery operations, emphasizing the need to tailor marketing and communication strategies to meet customer preferences. Additionally, providing information about appropriate package handling by automated technologies may alleviate concerns and increase the acceptance of these modes among all customer groups.more » « less
-
Drone-based last-mile delivery is an emerging technology that uses drones loaded onto a truck to deliver parcels to customers. In this paper, we introduce a fully automated system for drone-based last-mile delivery through incorporation of autonomous vehicles (AVs). A novel problem called the autonomous vehicle routing problem with drones (A-VRPD) is defined. A-VRPD is to select AVs from a pool of available AVs based on crowd sourcing, assign selected AVs to customer groups, and schedule routes for selected AVs to optimize the total operational cost. We formulate A-VRPD as a Mixed Integer Linear Program (MILP) and propose an optimization framework to solve the problem. A greedy algorithm is also developed to significantly improve the running time for large-scale delivery scenarios. Extensive simulations were conducted taking into account real-world operational costs for different types of AVs, traveled distances calculated considering the real-time traffic conditions using Google Map API, and varying load capacities of AVs. We evaluated the performance in comparison with two different state-of-the-art solutions: an algorithm designed to address the traditional vehicle routing problem with drones (VRP-D), which involves human-operated trucks working in tandem with drones to deliver parcels, and an algorithm for the two echelon vehicle routing problem (2E-VRP), wherein parcels are first transported to satellite locations and subsequently delivered from those satellites to the customers. The results indicate a substantial increase in profits for both the delivery company and vehicle owners compared with the state-of-the-art algorithms.more » « less
-
Many cities across the world are looking to use technology and innovation to improve the overall efficiency and safety for their residents. At the heart of these smart-city plans, a variety of intelligent transportation system technologies can be used to improve safety, enhance mobility measures (e.g., traffic flow), and minimize environmental impacts of a city’s mobility ecosystem. Early implementations of these ITS technologies often take place in affluent cities, where there are many funding opportunities and suitable areas for deployment. However, it is critical that we also develop smart city solutions that are focused on improving conditions of disadvantaged and environmental justice communities, whose residents have suffered the most from unmitigated urban sprawl and its environmental and health impacts. As a leading example, Inland Southern California has grown to be one of the largest hubs of goods movement in the world. Numerous logistics facilities such as warehouses, rail facilities, and truck depots have rapidly spread throughout these communities, with the local residents bearing a disproportionate burden of truck traffic, poor air quality, and adverse health effects. Further, the majority of residents have lower-wage jobs and very few mobility options, other than low-end personal car ownership. To improve this situation, UC Riverside researchers have focused their smart city research on these impacted communities, finding innovative solutions to eco-friendly traffic management, developing better-shared (electric) mobility solutions for the community, improving freight movements, and enhancing the transition to vehicle electrification. Numerous research and development projects are currently underway in Inland Southern California, spanning advanced smart city modeling and impact analysis, community outreach events, and real-world technology demonstrations. This chapter describes several of these ITS solutions and their potential for improving many cities around the world.more » « less
-
Understanding the preferences for new and future transportation technologies is important to ensure an efficient and equitable future transportation system. A survey was conducted of Americans’ preferences for several such technologies. Americans are concerned about vehicle range and charging station availability for electric vehicles (EVs) and hesitant about autonomous vehicle (AV) safety. Opinions about many transportation technologies, such as vertical takeoff and landing (i.e., air taxis), shared parking, and air-drone delivery are mixed. These less familiar technologies require continued tracking of preferences. A 55% increase is estimated in the probability of an individual choosing a battery electric vehicle (BEV) pickup truck if its fuel economy increases by about 9%. This result supports a market for BEV pickup trucks currently under development by many automakers. The preference for vehicle autonomation appears to depend on the use case. Driving task automation is preferred by residents of low-density, car-dependent areas where long commutes are common. In contrast, automated parking technologies are favored by those living in denser communities. Intermittent bus lanes are favored by those living in high population density areas, but not among those in areas with high shares of zero-vehicle households. These results provide indications of where to direct future research in the field.more » « less
An official website of the United States government

