skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 22, 2025

Title: Intelligent Transportation System Solutions in Disadvantaged Communities
Many cities across the world are looking to use technology and innovation to improve the overall efficiency and safety for their residents. At the heart of these smart-city plans, a variety of intelligent transportation system technologies can be used to improve safety, enhance mobility measures (e.g., traffic flow), and minimize environmental impacts of a city’s mobility ecosystem. Early implementations of these ITS technologies often take place in affluent cities, where there are many funding opportunities and suitable areas for deployment. However, it is critical that we also develop smart city solutions that are focused on improving conditions of disadvantaged and environmental justice communities, whose residents have suffered the most from unmitigated urban sprawl and its environmental and health impacts. As a leading example, Inland Southern California has grown to be one of the largest hubs of goods movement in the world. Numerous logistics facilities such as warehouses, rail facilities, and truck depots have rapidly spread throughout these communities, with the local residents bearing a disproportionate burden of truck traffic, poor air quality, and adverse health effects. Further, the majority of residents have lower-wage jobs and very few mobility options, other than low-end personal car ownership. To improve this situation, UC Riverside researchers have focused their smart city research on these impacted communities, finding innovative solutions to eco-friendly traffic management, developing better-shared (electric) mobility solutions for the community, improving freight movements, and enhancing the transition to vehicle electrification. Numerous research and development projects are currently underway in Inland Southern California, spanning advanced smart city modeling and impact analysis, community outreach events, and real-world technology demonstrations. This chapter describes several of these ITS solutions and their potential for improving many cities around the world.  more » « less
Award ID(s):
2152258
PAR ID:
10584678
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Nature Switzerland
Date Published:
Page Range / eLocation ID:
435 to 466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Future of Privacy Forum (FPF) co-led a task force of experts to develop a Model Privacy Impact Assessment (PIA) Policy for governments and communities that are considering sharing personal data collected from “smart city” solutions. This Model PIA Policy was developed as part of the G20 Global Smart Cities Alliance on Technology Governance, a partnership of leading international organizations and city networks working to source tried-and-tested policy approaches to govern the use of smart city technologies. Its institutional partners represent more than 200,000 cities and local governments, leading companies, startups, research institutions, and civil society communities. 
    more » « less
  2. The collection and use of digital data by “smart city” programs raise complex operational and ethical questions that can best be addressed through carefully-monitored pilot studies before urban innovations are more widely adopted. We have created a network of single-owner campuses (academic, government, corporate and nonprofit) in the Cascadia megaregion that connects Portland (OR), Seattle (WA) and Vancouver (BC), where smart city products and services can be evaluated before deployment in neighborhoods and business districts. On the five initial campuses, we are co-locating assemblages of up to a dozen technologies through which issues of data interoperability, management, privacy and monopolization can be explored. The initial research and policy goals of this network are to educate the public about smart cities, improve accessibility for populations with disabilities, prepare city residents for natural disasters, and monitor urban tree canopies so they can better mitigate the urban heat island effect. If replicated in other regions, this testing approach can accelerate cities' responsible integration of data science solutions that can address both local and global problems. 
    more » « less
  3. In recent years, there has been a growing interest in so-called smart cities. These cities use technology to connect and enhance the lives of their citizens. Smart cities use many Internet of Things (loT) devices, such as sensors and video cameras, that are interconnected to provide constant feedback and up-to-date information on everything that is happening. Despite the benefits of these cities, they introduce a numerous new vulnerabilities as well. These smart cities are now susceptible to cyber-attacks that aim to “alter, disrupt, deceive, degrade, or destroy computer systems.” Through the use of an educational and research-based loT test-bed with multiple networking layers and heterogeneous devices connected to simultaneously support networking research, anomaly detection, and security principles, we can pinpoint some of these vulnerabilities. This work will contribute potential solutions to these vulnerabilities that can hopefully be replicated in smart cities around the world. Specifically, in the transportation section of our educational smart city several vulnerabilities in the signal lights, street lights, and the cities train network were discovered. To conduct this research two scenarios were developed. These consisted of inside the network security and network perimeter security. For the latter we were able to find extensive vulnerabilities that would allow an attacker to map the entire smart city sub-network. Solutions to this problem are outlined that utilize an Intrusion Detection System and Port Mirroring. However, while we were able to exploit the city's Programmable Logic Controller (PLC) once inside the network, it was found that due to dated Supervisory Control and Data Acquisition (SCADA) systems, there were almost no solutions to these exploits. 
    more » « less
  4. Video cameras in smart cities can be used to provide data to improve pedestrian safety and traffic management. Video recordings inherently violate privacy, and technological solutions need to be found to preserve it. Smart city applications deployed on top of the COSMOS research testbed in New York City are envisioned to be privacy friendly. This contribution presents one approach to privacy preservation– a video anonymization pipeline implemented in the form of blurring of pedestrian faces and vehicle license plates. The pipeline utilizes customized deeplearning models based on YOLOv4 for detection of privacysensitive objects in street-level video recordings. To achieve real time inference, the pipeline includes speed improvements via NVIDIA TensorRT optimization. When applied to the video dataset acquired at an intersection within the COSMOS testbed in New York City, the proposed method anonymizes visible faces and license plates with recall of up to 99% and inference speed faster than 100 frames per second. The results of a comprehensive evaluation study are presented. A selection of anonymized videos can be accessed via the COSMOS testbed portal. Index Terms—Smart City, Sensors, Video Surveillance, Privacy Protection, Object Detection, Deep Learning, TensorRT. 
    more » « less
  5. Video cameras in smart cities can be used to provide data to improve pedestrian safety and traffic management. Video recordings inherently violate privacy, and technological solutions need to be found to preserve it. Smart city applications deployed on top of the COSMOS research testbed in New York City are envisioned to be privacy friendly. This contribution presents one approach to privacy preservation – a video anonymization pipeline implemented in the form of blurring of pedestrian faces and vehicle license plates. The pipeline utilizes customized deeplearning models based on YOLOv4 for detection of privacysensitive objects in street-level video recordings. To achieve real time inference, the pipeline includes speed improvements via NVIDIA TensorRT optimization. When applied to the video dataset acquired at an intersection within the COSMOS testbed in New York City, the proposed method anonymizes visible faces and license plates with recall of up to 99% and inference speed faster than 100 frames per second. The results of a comprehensive evaluation study are presented. A selection of anonymized videos can be accessed via the COSMOS testbed portal. Index Terms—Smart City, Sensors, Video Surveillance, Privacy Protection, Object Detection, Deep Learning, TensorRT. 
    more » « less