Abstract Hilbert–Kunz multiplicity and F-signature are numerical invariants of commutative rings in positive characteristic that measure severity of singularities: for a regular ring both invariants are equal to one and the converse holds under mild assumptions. A natural question is for what singular rings these invariants are closest to one. For Hilbert–Kunz multiplicity this question was first considered by the last two authors and attracted significant attention. In this paper, we study this question, i.e., an upper bound, for F-signature and revisit lower bounds on Hilbert–Kunz multiplicity.
more »
« less
The size of wild Kloosterman sums in number fields and function fields
We study p-adic hyper-Kloosterman sums, a generalization of the Kloosterman sum with a parameter k that recovers the classical Kloosterman sum when k = 2, over general p-adic rings and even equal characteristic local rings. These can be evaluated by a simple stationary phase estimate when k is not divisible by p, giving an essentially sharp bound for their size. We give a more complicated stationary phase estimate to evaluate them in the case when k is divisible by p. This gives both an upper bound and a lower bound showing the upper bound is essentially sharp. This generalizes previously known bounds in the case of ℤ/p. The lower bounds in the equal characteristic case have two applications to function field number theory, showing that certain short interval sums and certain moments of Dirichlet L-functions do not, as one might hope, admit square-root cancellation.
more »
« less
- Award ID(s):
- 2435243
- PAR ID:
- 10528498
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal d'Analyse Mathématique
- Volume:
- 151
- Issue:
- 1
- ISSN:
- 0021-7670
- Page Range / eLocation ID:
- 303 to 341
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We prove several hardness results for training depth-2 neural networks with the ReLU activation function; these networks are simply weighted sums (that may include negative coefficients) of ReLUs. Our goal is to output a depth-2 neural network that minimizes the square loss with respect to a given training set. We prove that this problem is NP-hard already for a network with a single ReLU. We also prove NP-hardness for outputting a weighted sum of k ReLUs minimizing the squared error (for k>1) even in the realizable setting (i.e., when the labels are consistent with an unknown depth-2 ReLU network). We are also able to obtain lower bounds on the running time in terms of the desired additive error ϵ. To obtain our lower bounds, we use the Gap Exponential Time Hypothesis (Gap-ETH) as well as a new hypothesis regarding the hardness of approximating the well known Densest k-Subgraph problem in subexponential time (these hypotheses are used separately in proving different lower bounds). For example, we prove that under reasonable hardness assumptions, any proper learning algorithm for finding the best fitting ReLU must run in time exponential in (1/epsilon)^2. Together with a previous work regarding improperly learning a ReLU (Goel et al., COLT'17), this implies the first separation between proper and improper algorithms for learning a ReLU. We also study the problem of properly learning a depth-2 network of ReLUs with bounded weights giving new (worst-case) upper bounds on the running time needed to learn such networks both in the realizable and agnostic settings. Our upper bounds on the running time essentially matches our lower bounds in terms of the dependency on epsilon.more » « less
-
We establish various properties of thep-adic algebraic\text{K}-theory of smooth algebras over perfectoid rings living over perfectoid valuation rings. In particular, thep-adic\text{K}-theory of such rings is homotopy invariant, and coincides with thep-adic\text{K}-theory of thep-adic generic fibre in high degrees. In the case of smooth algebras over perfectoid valuation rings of mixed characteristic the latter isomorphism holds in all degrees and generalises a result of Nizioł.more » « less
-
Abstract We consider negative moments of quadratic Dirichlet $$L$$–functions over function fields. Summing over monic square-free polynomials of degree $2g+1$ in $$\mathbb{F}_{q}[x]$$, we obtain an asymptotic formula for the $$k^{\textrm{th}}$$ shifted negative moment of $$L(1/2+\beta ,\chi _{D})$$, in certain ranges of $$\beta $$ (e.g., when roughly $$\beta \gg \log g/g $$ and $k<1$). We also obtain non-trivial upper bounds for the $$k^{\textrm{th}}$$ shifted negative moment when $$\log (1/\beta ) \ll \log g$$. Previously, almost sharp upper bounds were obtained in [ 3] in the range $$\beta \gg g^{-\frac{1}{2k}+\epsilon }$$.more » « less
-
Abstract In materials that undergo martensitic phase transformation, macroscopic loading often leads to the creation and/or rearrangement of elastic domains. This paper considers an example involving a single-crystal slab made from two martensite variants. When the slab is made to bend, the two variants form a characteristic microstructure that we like to call “twinning with variable volume fraction.” Two 1996 papers by Chopra et al. explored this example using bars made from InTl, providing considerable detail about the microstructures they observed. Here we offer an energy-minimization-based model that is motivated by their account. It uses geometrically linear elasticity, and treats the phase boundaries as sharp interfaces. For simplicity, rather than model the experimental forces and boundary conditions exactly, we consider certain Dirichlet or Neumann boundary conditions whose effect is to require bending. This leads to certain nonlinear (and nonconvex) variational problems that represent the minimization of elastic plus surface energy (and the work done by the load, in the case of a Neumann boundary condition). Our results identify how the minimum value of each variational problem scales with respect to the surface energy density. The results are established by proving upper and lower bounds that scale the same way. The upper bounds are ansatz-based, providing full details about some (nearly) optimal microstructures. The lower bounds are ansatz-free, so they explain why no other arrangement of the two phases could be significantly better.more » « less
An official website of the United States government

