The Springer resolution of the nilpotent cone is used to give a geometric construction of the irreducible representations of Weyl groups. Borho and MacPherson obtain the Springer correspondence by applying the decomposition theorem to the Springer resolution, establishing an injective map from the set of irreducible Weyl group representations to simple equivariant perverse sheaves on the nilpotent cone. In this manuscript, we consider a generalization of the Springer resolution using a variety defined by the first author. Our main result shows that in the type A case, applying the decomposition theorem to this map yields all simple perverse sheaves on the nilpotent cone with multiplicity as predicted by Lusztig’s generalized Springer correspondence. 
                        more » 
                        « less   
                    
                            
                            General multiple Dirichlet series from perverse sheaves
                        
                    
    
            We give an axiomatic characterization of multiple Dirichlet series over the function field Fq(T), generalizing a set of axioms given by Diaconu and Pasol. The key axiom, relating the coefficients at prime powers to sums of the coefficients, formalizes an observation of Chinta. The existence of multiple Dirichlet series satisfying these axioms is proved by exhibiting the coefficients as trace functions of explicit perverse sheaves and using properties of perverse sheaves. The multiple Dirichlet series defined this way include, as special cases, many that have appeared previously in the literature. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2101491
- PAR ID:
- 10528505
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Number Theory
- Volume:
- 262
- Issue:
- C
- ISSN:
- 0022-314X
- Page Range / eLocation ID:
- 408 to 453
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We prove a generic smoothness result in rigid analytic geometry over a characteristic zero non-archimedean field. The proof relies on a novel notion of generic points in rigid analytic geometry which are well adapted to ‘spreading out’ arguments, in analogy with the use of generic points in scheme theory. As an application, we develop a six-functor formalism for Zariski-constructible étale sheaves on characteristic zero rigid spaces. Among other things, this implies that characteristic zero rigid spaces support a well-behaved theory of perverse sheaves.more » « less
- 
            We study the topology of Hitchin fibrations via abelian surfaces. We establish the P=W conjecture for genus 2 2 curves and arbitrary rank. In higher genus and arbitrary rank, we prove that P=W holds for the subalgebra of cohomology generated by even tautological classes. Furthermore, we show that all tautological generators lie in the correct pieces of the perverse filtration as predicted by the P=W conjecture. In combination with recent work of Mellit, this reduces the full conjecture to the multiplicativity of the perverse filtration. Our main technique is to study the Hitchin fibration as a degeneration of the Hilbert–Chow morphism associated with the moduli space of certain torsion sheaves on an abelian surface, where the symmetries induced by Markman’s monodromy operators play a crucial role.more » « less
- 
            We construct a perverse sheaf related to the the matrix exponential sums investigated by Erdélyi and Tóth [Matrix Kloosterman sums, 2021, arXiv:2109.00762]. As this sheaf appears as a summand of certain tensor product of Kloosterman sheaves, we can establish the exact structure of the cohomology attached to the sums by relating it to the Springer correspondence and using the recursion formula of Erdélyi and Tóth.more » « less
- 
            Abstract We initiate and develop a framework to handle the specialisation morphism as a filtered morphism for the perverse, and for the perverse Leray filtration, on the cohomology with constructible coefficients of varieties and morphisms parameterised by a curve. As an application, we use this framework to carry out a detailed study of filtered specialisation for the Hitchin morphisms associated with the compactification of Dolbeault moduli spaces in [de 2018].more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    