Team member inclusion is vital in collaborative teams. In this work, we explore two strategies to increase the inclusion of human team members in a human-robot team: 1) giving a person in the group a specialized role (the 'robot liaison') and 2) having the robot verbally support human team members. In a human subjects experiment (N = 26 teams, 78 participants), groups of three participants completed two rounds of a collaborative task. In round one, two participants (ingroup) completed a task with a robot in one room, and one participant (outgroup) completed the same task with a robot in a different room. In round two, all three participants and one robot completed a second task in the same room, where one participant was designated as the robot liaison. During round two, the robot verbally supported each participant 6 times on average. Results show that participants with the robot liaison role had a lower perceived group inclusion than the other group members. Additionally, when outgroup members were the robot liaison, the group was less likely to incorporate their ideas into the group's final decision. In response to the robot's supportive utterances, outgroup members, and not ingroup members, showed an increase in the proportion of time they spent talking to the group. Our results suggest that specialized roles may hinder human team member inclusion, whereas supportive robot utterances show promise in encouraging contributions from individuals who feel excluded.
more »
« less
Animated Surfaces for Novel Robot-Rooms
We discuss novel human-centered intelligent spaces, specifically robotic elements which form the core of an interactive room that physically reconfigures: a robot-room. The proposed robot-room represents an advance in human-centered computing whereby human interaction is within a machine that physically envelops us. We discuss the motivation for such robot-rooms, and present initial work aimed at their physical realization.
more »
« less
- Award ID(s):
- 2221125
- PAR ID:
- 10528518
- Publisher / Repository:
- https://sites.google.com/view/hfr2023/home
- Date Published:
- Subject(s) / Keyword(s):
- Robot-Rooms, Robotic, Surfaces.
- Format(s):
- Medium: X
- Location:
- The 16th International Workshop on Human-Friendly Robotics (HFR 2023), Munich, Germany, September 2023..
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Human-centered environments provide affordances for and require the use of two-handed, or bimanual, manipulations. Robots designed to function in, and physically interact with, these environments have not been able to meet these requirements because standard bimanual control approaches have not accommodated the diverse, dynamic, and intricate coordinations between two arms to complete bimanual tasks. In this work, we enabled robots to more effectively perform bimanual tasks by introducing a bimanual shared-control method. The control method moves the robot’s arms to mimic the operator’s arm movements but provides on-the-fly assistance to help the user complete tasks more easily. Our method used a bimanual action vocabulary, constructed by analyzing how people perform two-hand manipulations, as the core abstraction level for reasoning about how to assist in bimanual shared autonomy. The method inferred which individual action from the bimanual action vocabulary was occurring using a sequence-to-sequence recurrent neural network architecture and turned on a corresponding assistance mode, signals introduced into the shared-control loop designed to make the performance of a particular bimanual action easier or more efficient. We demonstrate the effectiveness of our method through two user studies that show that novice users could control a robot to complete a range of complex manipulation tasks more successfully using our method compared to alternative approaches. We discuss the implications of our findings for real-world robot control scenarios.more » « less
-
Abstract Humans can physically interact with other humans adeptly. Some overground interaction tasks, such as guiding a partner across a room, occur without visual and verbal communication, which suggests that the information exchanges occur through sensing movements and forces. To understand the process of motor communication during overground physical interaction, we hypothesized that humans modulate the mechanical properties of their arms for increased awareness and sensitivity to ongoing interaction. For this, we used an overground interactive robot to guide a human partner across one of three randomly chosen paths while occasionally providing force perturbations to measure the arm stiffness. We observed that the arm stiffness was lower at instants when the robot’s upcoming trajectory was unknown compared to instants when it was predicable - the first evidence of arm stiffness modulation for better motor communication during overground physical interaction.more » « less
-
In this work, we discuss a theoretically motivated family-centered design approach for child-robot interactions, adapted by Family Systems Theory (FST) and Family Ecological Model (FEM). Long-term engagement and acceptance of robots in the home is influenced by factors that surround the child and the family, such as child-sibling-parent relationships and family routines, rituals, and values. A family-centered approach to interaction design is essential when developing in-home technology for children, especially for social agents like robots with which they can form connections and relationships. We review related literature in family theories and connect it with child-robot interaction and child-computer interaction research. We present two case studies that exemplify how family theories, FST and FEM, can inform the integration of robots into homes, particularly research into child-robot and family-robot interaction. Finally, we pose five overarching recommendations for a family-centered design approach in child-robot interactions.more » « less
-
An important component for the effective collaboration of humans with robots is the compatibility of their movements, especially when humans physically collaborate with a robot partner. Following previous findings that humans interact more seamlessly with a robot that moves with humanlike or biological velocity profiles, this study examined whether humans can adapt to a robot that violates human signatures. The specific focus was on the role of extensive practice and realtime augmented feedback. Six groups of participants physically tracked a robot tracing an ellipse with profiles where velocity scaled with the curvature of the path in biological and nonbiological ways, while instructed to minimize the interaction force with the robot. Three of the 6 groups received real-time visual feedback about their force error. Results showed that with 3 daily practice sessions, when given feedback about their force errors, humans could decrease their interaction forces when the robot’s trajectory violated human-like velocity patterns. Conversely, when augmented feedback was not provided, there were no improvements despite this extensive practice. The biological profile showed no improvements, even with feedback, indicating that the (non-zero) force had already reached a floor level. These findings highlight the importance of biological robot trajectories and augmented feedback to guide humans to adapt to non-biological movements in physical human-robot interaction. These results have implications on various fields of robotics, such as surgical applications and collaborative robots for industry.more » « less
An official website of the United States government

