skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Flexible Extended Krylov Subspace Method for Approximating Markov Functions of Matrices
A flexible extended Krylov subspace method (F-EKSM) is considered for numerical approximation of the action of a matrix function f(A) to a vector b, where the function f is of Markov type. F-EKSM has the same framework as the extended Krylov subspace method (EKSM), replacing the zero pole in EKSM with a properly chosen fixed nonzero pole. For symmetric positive definite matrices, the optimal fixed pole is derived for F-EKSM to achieve the lowest possible upper bound on the asymptotic convergence factor, which is lower than that of EKSM. The analysis is based on properties of Faber polynomials of A and (I−A/s)−1. For large and sparse matrices that can be handled efficiently by LU factorizations, numerical experiments show that F-EKSM and a variant of RKSM based on a small number of fixed poles outperform EKSM in both storage and runtime, and usually have advantages over adaptive RKSM in runtime.  more » « less
Award ID(s):
2111496
PAR ID:
10528760
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Mathematics
Volume:
11
Issue:
20
ISSN:
2227-7390
Page Range / eLocation ID:
4341
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper concerns the theory and development of inexact rational Krylov subspace methods for approximating the action of a function of a matrix f(A) to a column vector b. At each step of the rational Krylov subspace methods, a shifted linear system of equations needs to be solved to enlarge the subspace. For large-scale problems, such a linear system is usually solved approximately by an iterative method. The main question is how to relax the accuracy of these linear solves without negatively affecting the convergence of the approximation of f(A)b. Our insight into this issue is obtained by exploring the residual bounds for the rational Krylov subspace approximations of f(A)b, based on the decaying behavior of the entries in the first column of certain matrices of A restricted to the rational Krylov subspaces. The decay bounds for these entries for both analytic functions and Markov functions can be efficiently and accurately evaluated by appropriate quadrature rules. A heuristic based on these bounds is proposed to relax the tolerances of the linear solves arising in each step of the rational Krylov subspace methods. As the algorithm progresses toward convergence, the linear solves can be performed with increasingly lower accuracy and computational cost. Numerical experiments for large nonsymmetric matrices show the effectiveness of the tolerance relaxation strategy for the inexact linear solves of rational Krylov subspace methods. 
    more » « less
  2. Approximating the action of a matrix function $$f(\vec{A})$$ on a vector $$\vec{b}$$ is an increasingly important primitive in machine learning, data science, and statistics, with applications such as sampling high dimensional Gaussians, Gaussian process regression and Bayesian inference, principle component analysis, and approximating Hessian spectral densities. Over the past decade, a number of algorithms enjoying strong theoretical guarantees have been proposed for this task. Many of the most successful belong to a family of algorithms called \emph{Krylov subspace methods}. Remarkably, a classic Krylov subspace method, called the Lanczos method for matrix functions (Lanczos-FA), frequently outperforms newer methods in practice. Our main result is a theoretical justification for this finding: we show that, for a natural class of \emph{rational functions}, Lanczos-FA matches the error of the best possible Krylov subspace method up to a multiplicative approximation factor. The approximation factor depends on the degree of $f(x)$'s denominator and the condition number of $$\vec{A}$$, but not on the number of iterations $$k$$. Our result provides a strong justification for the excellent performance of Lanczos-FA, especially on functions that are well approximated by rationals, such as the matrix square root. 
    more » « less
  3. Ye, Qiang (Ed.)
    An inexact rational Krylov subspace method is studied to solve large-scale nonsymmetric eigenvalue problems. Each iteration (outer step) of the rational Krylov subspace method requires solution to a shifted linear system to enlarge the subspace, performed by an iterative linear solver for large-scale problems. Errors are introduced at each outer step if these linear systems are solved approx- imately by iterative methods (inner step), and they accumulate in the rational Krylov subspace. In this article, we derive an upper bound on the errors intro- duced at each outer step to maintain the same convergence as exact rational Krylov subspace method for approximating an invariant subspace. Since this bound is inversely proportional to the current eigenresidual norm of the target invariant subspace, the tolerance of iterative linear solves at each outer step can be relaxed with the outer iteration progress. A restarted variant of the inexact rational Krylov subspace method is also proposed. Numerical experiments show the effectiveness of relaxing the inner tolerance to save computational cost. 
    more » « less
  4. In this paper, we propose a new spatial temperature aware transient EM induced stress analysis method. The new method consists of two new contributions: First, we propose a new TM-aware void saturation volume estimation method for fast immortality check in the post-voiding phase for the first time. We derive the analytic formula to estimate the void saturation in the presence of spatial temperature gradients due to Joule heating. Second, we developed a fast numerical solution for EM-induced stress analysis for multi-segment interconnect trees considering TM effect. The new method first transforms the coupled EM-TM partial differential equations into linear time-invariant ordinary differential equations (ODEs). Then extended Krylov subspace-based reduction technique is employed to reduce the size of the original system matrices so that they can be efficiently simulated in the time domain. The proposed method can perform the simulation process for both void nucleation and void growth phases under time-varying input currents and position-dependent temperatures. The numerical results show that, compared to the recently proposed semi-analytic EM-TM method, the proposed method can lead to about 28x speedup on average for the interconnect with up to 1000 branches for both void nucleation and growth phases with negligible errors. 
    more » « less
  5. Abstract. We describe a Lanczos-based algorithm for approximating the product of a rational matrix function with a vector. This algorithm, which we call the Lanczos method for optimal rational matrix function approximation (Lanczos-OR), returns the optimal approximation from a given Krylov subspace in a norm depending on the rational function’s denominator, and it can be computed using the information from a slightly larger Krylov subspace. We also provide a low-memory implementation which only requires storing a number of vectors proportional to the denominator degree of the rational function. Finally, we show that Lanczos-OR can be used to derive algorithms for computing other matrix functions, including the matrix sign function and quadrature-based rational function approximations. In many cases, it improves on the approximation quality of prior approaches, including the standard Lanczos method, with little additional computational overhead. 
    more » « less