Abstract We combine theoretical results from polytope domain meshing, generalized barycentric coordinates, and finite element exterior calculus to construct scalar- and vector-valued basis functions for conforming finite element methods on generic convex polytope meshes in dimensions 2 and 3. Our construction recovers well-known bases for the lowest order Nédélec, Raviart–Thomas, and Brezzi–Douglas–Marini elements on simplicial meshes and generalizes the notion of Whitney forms to non-simplicial convex polygons and polyhedra. We show that our basis functions lie in the correct function space with regards to global continuity and that they reproduce the requisite polynomial differential forms described by finite element exterior calculus. We present a method to count the number of basis functions required to ensure these two key properties.
more »
« less
Averaging property of wedge product and naturality in discrete exterior calculus
In exterior calculus on smooth manifolds, the exterior derivative and wedge products are natural with respect to smooth maps between manifolds, that is, these operations commute with pullback. In discrete exterior calculus (DEC), simplicial cochains play the role of discrete forms, the coboundary operator serves as the discrete exterior derivative, and an antisymmetrized cup-like product provides a discrete wedge product. We show that these discrete operations in DEC are natural with respect to abstract simplicial maps. A second contribution is a new averaging interpretation of the discrete wedge product in DEC. We also show that this wedge product is the same as Wilson’s cochain product defined using Whitney and de Rham maps.
more »
« less
- PAR ID:
- 10528640
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Advances in Computational Mathematics
- Volume:
- 50
- ISSN:
- 1019-7168
- Subject(s) / Keyword(s):
- Partial differential equations Nonlinearity Chain rule Pullback Morphisms Simplicial cochains Discrete differential forms Whitney forms
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Subgradient and Newton algorithms for nonsmooth optimization require generalized derivatives to satisfy subtle approximation properties: conservativity for the former and semismoothness for the latter. Though these two properties originate in entirely different contexts, we show that in the semi-algebraic setting they are equivalent. Both properties for a generalized derivative simply require it to coincide with the standard directional derivative on the tangent spaces of some partition of the domain into smooth manifolds. An appealing byproduct is a new short proof that semi-algebraic maps are semismooth relative to the Clarke Jacobian.more » « less
-
Abstract We consider the tasks of representing, analysing and manipulating maps between shapes. We model maps as densities over the product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable using the language of signal processing on manifolds. Being a manifold itself, the product space endows the set of maps with a geometry of its own, which we exploit to define map operations in the spectral domain; we also derive relationships with other existing representations (soft maps and functional maps). To apply these ideas in practice, we discretize product manifolds and their Laplace–Beltrami operators, and we introduce localized spectral analysis of the product manifold as a novel tool for map processing. Our framework applies to maps defined between and across 2D and 3D shapes without requiring special adjustment, and it can be implemented efficiently with simple operations on sparse matrices.more » « less
-
We address fundamental aspects in the approximation theory of vector-valued finite element methods, using finite element exterior calculus as a unifying framework. We generalize the Clément interpolant and the Scott-Zhang interpolant to finite element differential forms, and we derive a broken Bramble-Hilbert lemma. Our interpolants require only minimal smoothness assumptions and respect partial boundary conditions. This permits us to state local error estimates in terms of the mesh size. Our theoretical results apply to curl-conforming and divergence-conforming finite element methods over simplicial triangulations.more » « less
-
Manifolds with fibered corners arise as resolutions of stratified spaces, as ‘many-body’ compactifications of vector spaces, and as compactifications of certain moduli spaces includ- ing those of non-abelian Yang–Mills–Higgs monopoles, among other settings. However, Cartesian products of manifolds with fibered corners do not generally have fibered corners themselves and thus fail to reflect the appropriate structure of products of the underlying spaces in the above settings. Here, we determine a resolution of the Cartesian product of fibered corners manifolds by blow-up which we call the ‘ordered product,’ which leads to a well-behaved category of fibered corners manifolds in which the ordered product satisfies the appropriate universal property. In contrast to the usual category of manifolds with cor- ners, this category of fibered corners not only has all finite products, but all finite transverse fiber products as well, and we show in addition that the ordered product is a natural product for wedge (aka incomplete edge) metrics and quasi-fibered boundary metrics, a class which includes QAC and QALE metrics.more » « less
An official website of the United States government

