skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectroscopy of Mesons Produced by Linearly Polarized Photons
A formalism for the experimental analysis of mesons produced by a beam of linearly polarized photons is presented. This formalism introduces a more general use of the reflectivity operator. The goal is to recognize resonances in cross-sections, their associated quantum numbers, and production mechanisms by performing partial wave analysis of multiple-meson final states.  more » « less
Award ID(s):
2110797
PAR ID:
10528706
Author(s) / Creator(s):
Publisher / Repository:
Symmetry 2023, 15(11), 2018; https://doi.org/10.3390/sym15112018
Date Published:
Journal Name:
Symmetry
Volume:
15
Issue:
11
ISSN:
2073-8994
Page Range / eLocation ID:
2018
Subject(s) / Keyword(s):
meson spectroscopy amplitude analysis polarized photons reflectivity
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As seen in experiments with poly(3‐hexylthiophene), substitution of hydrogen with deuterium on the main chain alone decreases crystallinity. To understand this effect, a general formalism for analysis of the dipole moments and polarizabilities incorporating quantum nuclei, is developed. The formalism, based on quantum dynamics of the proton/deuteron and on the perturbative analysis of the dipole interaction energy, accounts for the anharmonicity of a potential energy surface and for the anisotropy of molecular dipole moments. The formalism is implemented within the Discrete Variable Representation and the Density Functional Theory describing, respectively, the quantum proton/deuteron on the thiophene ring and the electronic structure of the 27‐atom model polymer chain, embedded into a larger crystalline environment. The isotope effect is mainly attributed to the differences in the zero‐point energy of the CH/CD bonds and to the isotope‐dependence of the dipole‐dipole inter‐chain interactions. 
    more » « less
  2. We establish the correspondence between two well-known frameworks for quantum chromodynamics (QCD) multiple scattering in nuclear media: the color glass condensate (CGC) and the high-twist (HT) expansion formalism. We argue that a consistent matching between both frameworks, in their common domain of validity, is achieved by incorporating the subeikonal longitudinal momentum phase in the CGC formalism, which mediates the transition between coherent and incoherent scattering. We perform a detailed calculation and analysis of direct photon production in proton-nucleus scattering as a concrete example to establish the matching between HT and CGC up to twist-4, including initial- and final-state interactions, as well as their interferences. The techniques developed in this work can be adapted to other processes in electron-nucleus and proton-nucleus collisions, and they provide a potential avenue for a unified picture of dilute-dense dynamics in nuclear media. 
    more » « less
  3. Abstract In this paper, we augment the modified embedded atom method formalism to include magnetic spin–spin interactions for elements with a persistent magnetic moment. While previous spin coupling methods have been based on pair potentials, our Magnetic MEAM formalism, which we term MagMEAM, incorporates the many-body and angular effects of MEAM allowing for the strength of the magnetic interaction to vary with atomic environment. In particular, this allows potentials using this formalism to differentiate the magnetic interaction of different stable phases of magnetic elements such as the ferritic and austenitic phases of iron. This, in turn, allows for a more robust and realistic description of magnetism in polymorphic materials than was previously possible. The motivation for MagMEAM, including the insufficiency of magnetic pair potentials, is presented and the structure of the formalism is developed. A sample iron potential is developed using this formalism and shown to exceed the capabilities of existing magnetic pair potentials by simultaneously reproducing the magnetic energy of both martensite and austenite as well as the dynamic mechanical and magnetic properties of martensite. This newly designed formalism will allow for deeper explorations in the the complex interaction between different phases of polymorphic magnetic materials at the molecular dynamics scale. 
    more » « less
  4. Abstract Drug combination discovery depends on reliable synergy metrics but no consensus exists on the correct synergy criterion to characterize combined interactions. The fragmented state of the field confounds analysis, impedes reproducibility, and delays clinical translation of potential combination treatments. Here we present a mass-action based formalism to quantify synergy. With this formalism, we clarify the relationship between the dominant drug synergy principles, and present a mapping of commonly used frameworks onto a unified synergy landscape. From this, we show how biases emerge due to intrinsic assumptions which hinder their broad applicability and impact the interpretation of synergy in discovery efforts. Specifically, we describe how traditional metrics mask consequential synergistic interactions, and contain biases dependent on the Hill-slope and maximal effect of single-drugs. We show how these biases systematically impact synergy classification in large combination screens, potentially misleading discovery efforts. Thus the proposed formalism can provide a consistent, unbiased interpretation of drug synergy, and accelerate the translatability of synergy studies. 
    more » « less
  5. ABSTRACT This paper formulates a velocity moment-based quasi-linear theory that combines the impacts of weakly unstable proton–cyclotron- (or, equivalently, electromagnetic ion cyclotron) and proton-mirror instabilities on the solar wind plasma initially characterized by an excessive perpendicular proton temperature anisotropy. The present formalism is an alternative to the existing model in that the weakly unstable modes are characterized by analytical formalism that involves the assumption of weak growth rate and/or fluid-theoretical dispersion relation, in place of numerical root-finding method based on the transcendental plasma dispersion function. This results in an efficient numerical platform for analyzing the quasi-linear development of the said instabilities. Such a formalism may be useful in the larger context of global solar wind modelling effort where an efficient calculation of self-consistent wave–particle interaction process is called for. A direct comparison with spacecraft observations of solar wind proton data distribution shows that the present weak growth rate formalism of quasi-linear calculation produces results that are consistent with the observation. 
    more » « less